This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: When the subspace region is not a subset of the base of the topology, the resulting set is the same as the subspace restricted to the base. (Contributed by Mario Carneiro, 15-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | restin.1 | |- X = U. J |
|
| Assertion | restin | |- ( ( J e. V /\ A e. W ) -> ( J |`t A ) = ( J |`t ( A i^i X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restin.1 | |- X = U. J |
|
| 2 | uniexg | |- ( J e. V -> U. J e. _V ) |
|
| 3 | 1 2 | eqeltrid | |- ( J e. V -> X e. _V ) |
| 4 | 3 | adantr | |- ( ( J e. V /\ A e. W ) -> X e. _V ) |
| 5 | restco | |- ( ( J e. V /\ X e. _V /\ A e. W ) -> ( ( J |`t X ) |`t A ) = ( J |`t ( X i^i A ) ) ) |
|
| 6 | 5 | 3com23 | |- ( ( J e. V /\ A e. W /\ X e. _V ) -> ( ( J |`t X ) |`t A ) = ( J |`t ( X i^i A ) ) ) |
| 7 | 4 6 | mpd3an3 | |- ( ( J e. V /\ A e. W ) -> ( ( J |`t X ) |`t A ) = ( J |`t ( X i^i A ) ) ) |
| 8 | 1 | restid | |- ( J e. V -> ( J |`t X ) = J ) |
| 9 | 8 | adantr | |- ( ( J e. V /\ A e. W ) -> ( J |`t X ) = J ) |
| 10 | 9 | oveq1d | |- ( ( J e. V /\ A e. W ) -> ( ( J |`t X ) |`t A ) = ( J |`t A ) ) |
| 11 | incom | |- ( X i^i A ) = ( A i^i X ) |
|
| 12 | 11 | oveq2i | |- ( J |`t ( X i^i A ) ) = ( J |`t ( A i^i X ) ) |
| 13 | 12 | a1i | |- ( ( J e. V /\ A e. W ) -> ( J |`t ( X i^i A ) ) = ( J |`t ( A i^i X ) ) ) |
| 14 | 7 10 13 | 3eqtr3d | |- ( ( J e. V /\ A e. W ) -> ( J |`t A ) = ( J |`t ( A i^i X ) ) ) |