This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A number is equal to the reciprocal of its reciprocal. Theorem I.10 of Apostol p. 18. (Contributed by NM, 26-Sep-1999) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recrec | |- ( ( A e. CC /\ A =/= 0 ) -> ( 1 / ( 1 / A ) ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recid2 | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( 1 / A ) x. A ) = 1 ) |
|
| 2 | 1cnd | |- ( ( A e. CC /\ A =/= 0 ) -> 1 e. CC ) |
|
| 3 | simpl | |- ( ( A e. CC /\ A =/= 0 ) -> A e. CC ) |
|
| 4 | reccl | |- ( ( A e. CC /\ A =/= 0 ) -> ( 1 / A ) e. CC ) |
|
| 5 | recne0 | |- ( ( A e. CC /\ A =/= 0 ) -> ( 1 / A ) =/= 0 ) |
|
| 6 | divmul | |- ( ( 1 e. CC /\ A e. CC /\ ( ( 1 / A ) e. CC /\ ( 1 / A ) =/= 0 ) ) -> ( ( 1 / ( 1 / A ) ) = A <-> ( ( 1 / A ) x. A ) = 1 ) ) |
|
| 7 | 2 3 4 5 6 | syl112anc | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( 1 / ( 1 / A ) ) = A <-> ( ( 1 / A ) x. A ) = 1 ) ) |
| 8 | 1 7 | mpbird | |- ( ( A e. CC /\ A =/= 0 ) -> ( 1 / ( 1 / A ) ) = A ) |