This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure law for reciprocal. (Contributed by NM, 30-Apr-2005) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rereccl | |- ( ( A e. RR /\ A =/= 0 ) -> ( 1 / A ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-rrecex | |- ( ( A e. RR /\ A =/= 0 ) -> E. x e. RR ( A x. x ) = 1 ) |
|
| 2 | eqcom | |- ( x = ( 1 / A ) <-> ( 1 / A ) = x ) |
|
| 3 | 1cnd | |- ( ( ( A e. RR /\ A =/= 0 ) /\ x e. RR ) -> 1 e. CC ) |
|
| 4 | simpr | |- ( ( ( A e. RR /\ A =/= 0 ) /\ x e. RR ) -> x e. RR ) |
|
| 5 | 4 | recnd | |- ( ( ( A e. RR /\ A =/= 0 ) /\ x e. RR ) -> x e. CC ) |
| 6 | simpll | |- ( ( ( A e. RR /\ A =/= 0 ) /\ x e. RR ) -> A e. RR ) |
|
| 7 | 6 | recnd | |- ( ( ( A e. RR /\ A =/= 0 ) /\ x e. RR ) -> A e. CC ) |
| 8 | simplr | |- ( ( ( A e. RR /\ A =/= 0 ) /\ x e. RR ) -> A =/= 0 ) |
|
| 9 | divmul | |- ( ( 1 e. CC /\ x e. CC /\ ( A e. CC /\ A =/= 0 ) ) -> ( ( 1 / A ) = x <-> ( A x. x ) = 1 ) ) |
|
| 10 | 3 5 7 8 9 | syl112anc | |- ( ( ( A e. RR /\ A =/= 0 ) /\ x e. RR ) -> ( ( 1 / A ) = x <-> ( A x. x ) = 1 ) ) |
| 11 | 2 10 | bitrid | |- ( ( ( A e. RR /\ A =/= 0 ) /\ x e. RR ) -> ( x = ( 1 / A ) <-> ( A x. x ) = 1 ) ) |
| 12 | 11 | rexbidva | |- ( ( A e. RR /\ A =/= 0 ) -> ( E. x e. RR x = ( 1 / A ) <-> E. x e. RR ( A x. x ) = 1 ) ) |
| 13 | 1 12 | mpbird | |- ( ( A e. RR /\ A =/= 0 ) -> E. x e. RR x = ( 1 / A ) ) |
| 14 | risset | |- ( ( 1 / A ) e. RR <-> E. x e. RR x = ( 1 / A ) ) |
|
| 15 | 13 14 | sylibr | |- ( ( A e. RR /\ A =/= 0 ) -> ( 1 / A ) e. RR ) |