This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Uniqueness for the square root function. (Contributed by Mario Carneiro, 9-Jul-2013) (Revised by NM, 17-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqrmo | |- ( A e. CC -> E* x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr1 | |- ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> ( x ^ 2 ) = A ) |
|
| 2 | simprr1 | |- ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> ( y ^ 2 ) = A ) |
|
| 3 | 1 2 | eqtr4d | |- ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> ( x ^ 2 ) = ( y ^ 2 ) ) |
| 4 | sqeqor | |- ( ( x e. CC /\ y e. CC ) -> ( ( x ^ 2 ) = ( y ^ 2 ) <-> ( x = y \/ x = -u y ) ) ) |
|
| 5 | 4 | ad2ant2r | |- ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> ( ( x ^ 2 ) = ( y ^ 2 ) <-> ( x = y \/ x = -u y ) ) ) |
| 6 | 3 5 | mpbid | |- ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> ( x = y \/ x = -u y ) ) |
| 7 | 6 | ord | |- ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> ( -. x = y -> x = -u y ) ) |
| 8 | 3simpc | |- ( ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) -> ( 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
|
| 9 | fveq2 | |- ( x = -u y -> ( Re ` x ) = ( Re ` -u y ) ) |
|
| 10 | 9 | breq2d | |- ( x = -u y -> ( 0 <_ ( Re ` x ) <-> 0 <_ ( Re ` -u y ) ) ) |
| 11 | oveq2 | |- ( x = -u y -> ( _i x. x ) = ( _i x. -u y ) ) |
|
| 12 | neleq1 | |- ( ( _i x. x ) = ( _i x. -u y ) -> ( ( _i x. x ) e/ RR+ <-> ( _i x. -u y ) e/ RR+ ) ) |
|
| 13 | 11 12 | syl | |- ( x = -u y -> ( ( _i x. x ) e/ RR+ <-> ( _i x. -u y ) e/ RR+ ) ) |
| 14 | 10 13 | anbi12d | |- ( x = -u y -> ( ( 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> ( 0 <_ ( Re ` -u y ) /\ ( _i x. -u y ) e/ RR+ ) ) ) |
| 15 | 8 14 | syl5ibcom | |- ( ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) -> ( x = -u y -> ( 0 <_ ( Re ` -u y ) /\ ( _i x. -u y ) e/ RR+ ) ) ) |
| 16 | 15 | ad2antlr | |- ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> ( x = -u y -> ( 0 <_ ( Re ` -u y ) /\ ( _i x. -u y ) e/ RR+ ) ) ) |
| 17 | 7 16 | syld | |- ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> ( -. x = y -> ( 0 <_ ( Re ` -u y ) /\ ( _i x. -u y ) e/ RR+ ) ) ) |
| 18 | negeq | |- ( y = 0 -> -u y = -u 0 ) |
|
| 19 | neg0 | |- -u 0 = 0 |
|
| 20 | 18 19 | eqtrdi | |- ( y = 0 -> -u y = 0 ) |
| 21 | 20 | eqeq2d | |- ( y = 0 -> ( x = -u y <-> x = 0 ) ) |
| 22 | eqeq2 | |- ( y = 0 -> ( x = y <-> x = 0 ) ) |
|
| 23 | 21 22 | bitr4d | |- ( y = 0 -> ( x = -u y <-> x = y ) ) |
| 24 | 23 | biimpcd | |- ( x = -u y -> ( y = 0 -> x = y ) ) |
| 25 | 24 | necon3bd | |- ( x = -u y -> ( -. x = y -> y =/= 0 ) ) |
| 26 | 7 25 | syli | |- ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> ( -. x = y -> y =/= 0 ) ) |
| 27 | 3simpc | |- ( ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) -> ( 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) |
|
| 28 | cnpart | |- ( ( y e. CC /\ y =/= 0 ) -> ( ( 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) <-> -. ( 0 <_ ( Re ` -u y ) /\ ( _i x. -u y ) e/ RR+ ) ) ) |
|
| 29 | 27 28 | imbitrid | |- ( ( y e. CC /\ y =/= 0 ) -> ( ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) -> -. ( 0 <_ ( Re ` -u y ) /\ ( _i x. -u y ) e/ RR+ ) ) ) |
| 30 | 29 | impancom | |- ( ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) -> ( y =/= 0 -> -. ( 0 <_ ( Re ` -u y ) /\ ( _i x. -u y ) e/ RR+ ) ) ) |
| 31 | 30 | adantl | |- ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> ( y =/= 0 -> -. ( 0 <_ ( Re ` -u y ) /\ ( _i x. -u y ) e/ RR+ ) ) ) |
| 32 | 26 31 | syld | |- ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> ( -. x = y -> -. ( 0 <_ ( Re ` -u y ) /\ ( _i x. -u y ) e/ RR+ ) ) ) |
| 33 | 17 32 | pm2.65d | |- ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> -. -. x = y ) |
| 34 | 33 | notnotrd | |- ( ( ( x e. CC /\ ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) /\ ( y e. CC /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> x = y ) |
| 35 | 34 | an4s | |- ( ( ( x e. CC /\ y e. CC ) /\ ( ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) -> x = y ) |
| 36 | 35 | ex | |- ( ( x e. CC /\ y e. CC ) -> ( ( ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) -> x = y ) ) |
| 37 | 36 | a1i | |- ( A e. CC -> ( ( x e. CC /\ y e. CC ) -> ( ( ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) -> x = y ) ) ) |
| 38 | 37 | ralrimivv | |- ( A e. CC -> A. x e. CC A. y e. CC ( ( ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) -> x = y ) ) |
| 39 | oveq1 | |- ( x = y -> ( x ^ 2 ) = ( y ^ 2 ) ) |
|
| 40 | 39 | eqeq1d | |- ( x = y -> ( ( x ^ 2 ) = A <-> ( y ^ 2 ) = A ) ) |
| 41 | fveq2 | |- ( x = y -> ( Re ` x ) = ( Re ` y ) ) |
|
| 42 | 41 | breq2d | |- ( x = y -> ( 0 <_ ( Re ` x ) <-> 0 <_ ( Re ` y ) ) ) |
| 43 | oveq2 | |- ( x = y -> ( _i x. x ) = ( _i x. y ) ) |
|
| 44 | neleq1 | |- ( ( _i x. x ) = ( _i x. y ) -> ( ( _i x. x ) e/ RR+ <-> ( _i x. y ) e/ RR+ ) ) |
|
| 45 | 43 44 | syl | |- ( x = y -> ( ( _i x. x ) e/ RR+ <-> ( _i x. y ) e/ RR+ ) ) |
| 46 | 40 42 45 | 3anbi123d | |- ( x = y -> ( ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) |
| 47 | 46 | rmo4 | |- ( E* x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> A. x e. CC A. y e. CC ( ( ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) /\ ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) -> x = y ) ) |
| 48 | 38 47 | sylibr | |- ( A e. CC -> E* x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |