This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reciprocal of a positive number is positive. Exercise 4 of Apostol p. 21. (Contributed by NM, 25-Aug-1999) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recgt0 | |- ( ( A e. RR /\ 0 < A ) -> 0 < ( 1 / A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( A e. RR /\ 0 < A ) -> A e. RR ) |
|
| 2 | 1 | recnd | |- ( ( A e. RR /\ 0 < A ) -> A e. CC ) |
| 3 | gt0ne0 | |- ( ( A e. RR /\ 0 < A ) -> A =/= 0 ) |
|
| 4 | 2 3 | recne0d | |- ( ( A e. RR /\ 0 < A ) -> ( 1 / A ) =/= 0 ) |
| 5 | 4 | necomd | |- ( ( A e. RR /\ 0 < A ) -> 0 =/= ( 1 / A ) ) |
| 6 | 5 | neneqd | |- ( ( A e. RR /\ 0 < A ) -> -. 0 = ( 1 / A ) ) |
| 7 | 0lt1 | |- 0 < 1 |
|
| 8 | 0re | |- 0 e. RR |
|
| 9 | 1re | |- 1 e. RR |
|
| 10 | 8 9 | ltnsymi | |- ( 0 < 1 -> -. 1 < 0 ) |
| 11 | 7 10 | ax-mp | |- -. 1 < 0 |
| 12 | simpll | |- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> A e. RR ) |
|
| 13 | 3 | adantr | |- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> A =/= 0 ) |
| 14 | 12 13 | rereccld | |- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> ( 1 / A ) e. RR ) |
| 15 | 14 | renegcld | |- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> -u ( 1 / A ) e. RR ) |
| 16 | simpr | |- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> ( 1 / A ) < 0 ) |
|
| 17 | 1 3 | rereccld | |- ( ( A e. RR /\ 0 < A ) -> ( 1 / A ) e. RR ) |
| 18 | 17 | adantr | |- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> ( 1 / A ) e. RR ) |
| 19 | 18 | lt0neg1d | |- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> ( ( 1 / A ) < 0 <-> 0 < -u ( 1 / A ) ) ) |
| 20 | 16 19 | mpbid | |- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> 0 < -u ( 1 / A ) ) |
| 21 | simplr | |- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> 0 < A ) |
|
| 22 | 15 12 20 21 | mulgt0d | |- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> 0 < ( -u ( 1 / A ) x. A ) ) |
| 23 | 2 | adantr | |- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> A e. CC ) |
| 24 | 23 13 | reccld | |- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> ( 1 / A ) e. CC ) |
| 25 | 24 23 | mulneg1d | |- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> ( -u ( 1 / A ) x. A ) = -u ( ( 1 / A ) x. A ) ) |
| 26 | 23 13 | recid2d | |- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> ( ( 1 / A ) x. A ) = 1 ) |
| 27 | 26 | negeqd | |- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> -u ( ( 1 / A ) x. A ) = -u 1 ) |
| 28 | 25 27 | eqtrd | |- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> ( -u ( 1 / A ) x. A ) = -u 1 ) |
| 29 | 22 28 | breqtrd | |- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> 0 < -u 1 ) |
| 30 | 1red | |- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> 1 e. RR ) |
|
| 31 | 30 | lt0neg1d | |- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> ( 1 < 0 <-> 0 < -u 1 ) ) |
| 32 | 29 31 | mpbird | |- ( ( ( A e. RR /\ 0 < A ) /\ ( 1 / A ) < 0 ) -> 1 < 0 ) |
| 33 | 32 | ex | |- ( ( A e. RR /\ 0 < A ) -> ( ( 1 / A ) < 0 -> 1 < 0 ) ) |
| 34 | 11 33 | mtoi | |- ( ( A e. RR /\ 0 < A ) -> -. ( 1 / A ) < 0 ) |
| 35 | ioran | |- ( -. ( 0 = ( 1 / A ) \/ ( 1 / A ) < 0 ) <-> ( -. 0 = ( 1 / A ) /\ -. ( 1 / A ) < 0 ) ) |
|
| 36 | 6 34 35 | sylanbrc | |- ( ( A e. RR /\ 0 < A ) -> -. ( 0 = ( 1 / A ) \/ ( 1 / A ) < 0 ) ) |
| 37 | axlttri | |- ( ( 0 e. RR /\ ( 1 / A ) e. RR ) -> ( 0 < ( 1 / A ) <-> -. ( 0 = ( 1 / A ) \/ ( 1 / A ) < 0 ) ) ) |
|
| 38 | 8 17 37 | sylancr | |- ( ( A e. RR /\ 0 < A ) -> ( 0 < ( 1 / A ) <-> -. ( 0 = ( 1 / A ) \/ ( 1 / A ) < 0 ) ) ) |
| 39 | 36 38 | mpbird | |- ( ( A e. RR /\ 0 < A ) -> 0 < ( 1 / A ) ) |