This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for reeff1o . (Contributed by Paul Chapman, 18-Oct-2007) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reeff1olem | |- ( ( U e. RR /\ 1 < U ) -> E. x e. RR ( exp ` x ) = U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioossicc | |- ( 0 (,) U ) C_ ( 0 [,] U ) |
|
| 2 | 0re | |- 0 e. RR |
|
| 3 | iccssre | |- ( ( 0 e. RR /\ U e. RR ) -> ( 0 [,] U ) C_ RR ) |
|
| 4 | 2 3 | mpan | |- ( U e. RR -> ( 0 [,] U ) C_ RR ) |
| 5 | 4 | adantr | |- ( ( U e. RR /\ 1 < U ) -> ( 0 [,] U ) C_ RR ) |
| 6 | 1 5 | sstrid | |- ( ( U e. RR /\ 1 < U ) -> ( 0 (,) U ) C_ RR ) |
| 7 | 2 | a1i | |- ( ( U e. RR /\ 1 < U ) -> 0 e. RR ) |
| 8 | simpl | |- ( ( U e. RR /\ 1 < U ) -> U e. RR ) |
|
| 9 | 0lt1 | |- 0 < 1 |
|
| 10 | 1re | |- 1 e. RR |
|
| 11 | lttr | |- ( ( 0 e. RR /\ 1 e. RR /\ U e. RR ) -> ( ( 0 < 1 /\ 1 < U ) -> 0 < U ) ) |
|
| 12 | 2 10 11 | mp3an12 | |- ( U e. RR -> ( ( 0 < 1 /\ 1 < U ) -> 0 < U ) ) |
| 13 | 9 12 | mpani | |- ( U e. RR -> ( 1 < U -> 0 < U ) ) |
| 14 | 13 | imp | |- ( ( U e. RR /\ 1 < U ) -> 0 < U ) |
| 15 | ax-resscn | |- RR C_ CC |
|
| 16 | 5 15 | sstrdi | |- ( ( U e. RR /\ 1 < U ) -> ( 0 [,] U ) C_ CC ) |
| 17 | efcn | |- exp e. ( CC -cn-> CC ) |
|
| 18 | 17 | a1i | |- ( ( U e. RR /\ 1 < U ) -> exp e. ( CC -cn-> CC ) ) |
| 19 | ssel2 | |- ( ( ( 0 [,] U ) C_ RR /\ y e. ( 0 [,] U ) ) -> y e. RR ) |
|
| 20 | 19 | reefcld | |- ( ( ( 0 [,] U ) C_ RR /\ y e. ( 0 [,] U ) ) -> ( exp ` y ) e. RR ) |
| 21 | 5 20 | sylan | |- ( ( ( U e. RR /\ 1 < U ) /\ y e. ( 0 [,] U ) ) -> ( exp ` y ) e. RR ) |
| 22 | ef0 | |- ( exp ` 0 ) = 1 |
|
| 23 | simpr | |- ( ( U e. RR /\ 1 < U ) -> 1 < U ) |
|
| 24 | 22 23 | eqbrtrid | |- ( ( U e. RR /\ 1 < U ) -> ( exp ` 0 ) < U ) |
| 25 | peano2re | |- ( U e. RR -> ( U + 1 ) e. RR ) |
|
| 26 | 25 | adantr | |- ( ( U e. RR /\ 1 < U ) -> ( U + 1 ) e. RR ) |
| 27 | reefcl | |- ( U e. RR -> ( exp ` U ) e. RR ) |
|
| 28 | 27 | adantr | |- ( ( U e. RR /\ 1 < U ) -> ( exp ` U ) e. RR ) |
| 29 | ltp1 | |- ( U e. RR -> U < ( U + 1 ) ) |
|
| 30 | 29 | adantr | |- ( ( U e. RR /\ 1 < U ) -> U < ( U + 1 ) ) |
| 31 | 8 | recnd | |- ( ( U e. RR /\ 1 < U ) -> U e. CC ) |
| 32 | ax-1cn | |- 1 e. CC |
|
| 33 | addcom | |- ( ( U e. CC /\ 1 e. CC ) -> ( U + 1 ) = ( 1 + U ) ) |
|
| 34 | 31 32 33 | sylancl | |- ( ( U e. RR /\ 1 < U ) -> ( U + 1 ) = ( 1 + U ) ) |
| 35 | 8 14 | elrpd | |- ( ( U e. RR /\ 1 < U ) -> U e. RR+ ) |
| 36 | efgt1p | |- ( U e. RR+ -> ( 1 + U ) < ( exp ` U ) ) |
|
| 37 | 35 36 | syl | |- ( ( U e. RR /\ 1 < U ) -> ( 1 + U ) < ( exp ` U ) ) |
| 38 | 34 37 | eqbrtrd | |- ( ( U e. RR /\ 1 < U ) -> ( U + 1 ) < ( exp ` U ) ) |
| 39 | 8 26 28 30 38 | lttrd | |- ( ( U e. RR /\ 1 < U ) -> U < ( exp ` U ) ) |
| 40 | 24 39 | jca | |- ( ( U e. RR /\ 1 < U ) -> ( ( exp ` 0 ) < U /\ U < ( exp ` U ) ) ) |
| 41 | 7 8 8 14 16 18 21 40 | ivth | |- ( ( U e. RR /\ 1 < U ) -> E. x e. ( 0 (,) U ) ( exp ` x ) = U ) |
| 42 | ssrexv | |- ( ( 0 (,) U ) C_ RR -> ( E. x e. ( 0 (,) U ) ( exp ` x ) = U -> E. x e. RR ( exp ` x ) = U ) ) |
|
| 43 | 6 41 42 | sylc | |- ( ( U e. RR /\ 1 < U ) -> E. x e. RR ( exp ` x ) = U ) |