This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function is real if its argument is real. (Contributed by NM, 27-Apr-2005) (Revised by Mario Carneiro, 28-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reefcl | |- ( A e. RR -> ( exp ` A ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | |- ( A e. RR -> A e. CC ) |
|
| 2 | efval | |- ( A e. CC -> ( exp ` A ) = sum_ k e. NN0 ( ( A ^ k ) / ( ! ` k ) ) ) |
|
| 3 | 1 2 | syl | |- ( A e. RR -> ( exp ` A ) = sum_ k e. NN0 ( ( A ^ k ) / ( ! ` k ) ) ) |
| 4 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 5 | 0zd | |- ( A e. RR -> 0 e. ZZ ) |
|
| 6 | eqid | |- ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
|
| 7 | 6 | eftval | |- ( k e. NN0 -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
| 8 | 7 | adantl | |- ( ( A e. RR /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
| 9 | reeftcl | |- ( ( A e. RR /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) e. RR ) |
|
| 10 | 6 | efcllem | |- ( A e. CC -> seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) e. dom ~~> ) |
| 11 | 1 10 | syl | |- ( A e. RR -> seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) e. dom ~~> ) |
| 12 | 4 5 8 9 11 | isumrecl | |- ( A e. RR -> sum_ k e. NN0 ( ( A ^ k ) / ( ! ` k ) ) e. RR ) |
| 13 | 3 12 | eqeltrd | |- ( A e. RR -> ( exp ` A ) e. RR ) |