This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for reeff1o . (Contributed by Paul Chapman, 18-Oct-2007) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reeff1olem | ⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → ∃ 𝑥 ∈ ℝ ( exp ‘ 𝑥 ) = 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioossicc | ⊢ ( 0 (,) 𝑈 ) ⊆ ( 0 [,] 𝑈 ) | |
| 2 | 0re | ⊢ 0 ∈ ℝ | |
| 3 | iccssre | ⊢ ( ( 0 ∈ ℝ ∧ 𝑈 ∈ ℝ ) → ( 0 [,] 𝑈 ) ⊆ ℝ ) | |
| 4 | 2 3 | mpan | ⊢ ( 𝑈 ∈ ℝ → ( 0 [,] 𝑈 ) ⊆ ℝ ) |
| 5 | 4 | adantr | ⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → ( 0 [,] 𝑈 ) ⊆ ℝ ) |
| 6 | 1 5 | sstrid | ⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → ( 0 (,) 𝑈 ) ⊆ ℝ ) |
| 7 | 2 | a1i | ⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → 0 ∈ ℝ ) |
| 8 | simpl | ⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → 𝑈 ∈ ℝ ) | |
| 9 | 0lt1 | ⊢ 0 < 1 | |
| 10 | 1re | ⊢ 1 ∈ ℝ | |
| 11 | lttr | ⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑈 ∈ ℝ ) → ( ( 0 < 1 ∧ 1 < 𝑈 ) → 0 < 𝑈 ) ) | |
| 12 | 2 10 11 | mp3an12 | ⊢ ( 𝑈 ∈ ℝ → ( ( 0 < 1 ∧ 1 < 𝑈 ) → 0 < 𝑈 ) ) |
| 13 | 9 12 | mpani | ⊢ ( 𝑈 ∈ ℝ → ( 1 < 𝑈 → 0 < 𝑈 ) ) |
| 14 | 13 | imp | ⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → 0 < 𝑈 ) |
| 15 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 16 | 5 15 | sstrdi | ⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → ( 0 [,] 𝑈 ) ⊆ ℂ ) |
| 17 | efcn | ⊢ exp ∈ ( ℂ –cn→ ℂ ) | |
| 18 | 17 | a1i | ⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → exp ∈ ( ℂ –cn→ ℂ ) ) |
| 19 | ssel2 | ⊢ ( ( ( 0 [,] 𝑈 ) ⊆ ℝ ∧ 𝑦 ∈ ( 0 [,] 𝑈 ) ) → 𝑦 ∈ ℝ ) | |
| 20 | 19 | reefcld | ⊢ ( ( ( 0 [,] 𝑈 ) ⊆ ℝ ∧ 𝑦 ∈ ( 0 [,] 𝑈 ) ) → ( exp ‘ 𝑦 ) ∈ ℝ ) |
| 21 | 5 20 | sylan | ⊢ ( ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) ∧ 𝑦 ∈ ( 0 [,] 𝑈 ) ) → ( exp ‘ 𝑦 ) ∈ ℝ ) |
| 22 | ef0 | ⊢ ( exp ‘ 0 ) = 1 | |
| 23 | simpr | ⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → 1 < 𝑈 ) | |
| 24 | 22 23 | eqbrtrid | ⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → ( exp ‘ 0 ) < 𝑈 ) |
| 25 | peano2re | ⊢ ( 𝑈 ∈ ℝ → ( 𝑈 + 1 ) ∈ ℝ ) | |
| 26 | 25 | adantr | ⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → ( 𝑈 + 1 ) ∈ ℝ ) |
| 27 | reefcl | ⊢ ( 𝑈 ∈ ℝ → ( exp ‘ 𝑈 ) ∈ ℝ ) | |
| 28 | 27 | adantr | ⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → ( exp ‘ 𝑈 ) ∈ ℝ ) |
| 29 | ltp1 | ⊢ ( 𝑈 ∈ ℝ → 𝑈 < ( 𝑈 + 1 ) ) | |
| 30 | 29 | adantr | ⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → 𝑈 < ( 𝑈 + 1 ) ) |
| 31 | 8 | recnd | ⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → 𝑈 ∈ ℂ ) |
| 32 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 33 | addcom | ⊢ ( ( 𝑈 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑈 + 1 ) = ( 1 + 𝑈 ) ) | |
| 34 | 31 32 33 | sylancl | ⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → ( 𝑈 + 1 ) = ( 1 + 𝑈 ) ) |
| 35 | 8 14 | elrpd | ⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → 𝑈 ∈ ℝ+ ) |
| 36 | efgt1p | ⊢ ( 𝑈 ∈ ℝ+ → ( 1 + 𝑈 ) < ( exp ‘ 𝑈 ) ) | |
| 37 | 35 36 | syl | ⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → ( 1 + 𝑈 ) < ( exp ‘ 𝑈 ) ) |
| 38 | 34 37 | eqbrtrd | ⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → ( 𝑈 + 1 ) < ( exp ‘ 𝑈 ) ) |
| 39 | 8 26 28 30 38 | lttrd | ⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → 𝑈 < ( exp ‘ 𝑈 ) ) |
| 40 | 24 39 | jca | ⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → ( ( exp ‘ 0 ) < 𝑈 ∧ 𝑈 < ( exp ‘ 𝑈 ) ) ) |
| 41 | 7 8 8 14 16 18 21 40 | ivth | ⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → ∃ 𝑥 ∈ ( 0 (,) 𝑈 ) ( exp ‘ 𝑥 ) = 𝑈 ) |
| 42 | ssrexv | ⊢ ( ( 0 (,) 𝑈 ) ⊆ ℝ → ( ∃ 𝑥 ∈ ( 0 (,) 𝑈 ) ( exp ‘ 𝑥 ) = 𝑈 → ∃ 𝑥 ∈ ℝ ( exp ‘ 𝑥 ) = 𝑈 ) ) | |
| 43 | 6 41 42 | sylc | ⊢ ( ( 𝑈 ∈ ℝ ∧ 1 < 𝑈 ) → ∃ 𝑥 ∈ ℝ ( exp ‘ 𝑥 ) = 𝑈 ) |