This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for exponential function. Equation 27 of Rudin p. 164. (Contributed by NM, 13-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efcan | |- ( A e. CC -> ( ( exp ` A ) x. ( exp ` -u A ) ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negcl | |- ( A e. CC -> -u A e. CC ) |
|
| 2 | efadd | |- ( ( A e. CC /\ -u A e. CC ) -> ( exp ` ( A + -u A ) ) = ( ( exp ` A ) x. ( exp ` -u A ) ) ) |
|
| 3 | 1 2 | mpdan | |- ( A e. CC -> ( exp ` ( A + -u A ) ) = ( ( exp ` A ) x. ( exp ` -u A ) ) ) |
| 4 | negid | |- ( A e. CC -> ( A + -u A ) = 0 ) |
|
| 5 | 4 | fveq2d | |- ( A e. CC -> ( exp ` ( A + -u A ) ) = ( exp ` 0 ) ) |
| 6 | ef0 | |- ( exp ` 0 ) = 1 |
|
| 7 | 5 6 | eqtrdi | |- ( A e. CC -> ( exp ` ( A + -u A ) ) = 1 ) |
| 8 | 3 7 | eqtr3d | |- ( A e. CC -> ( ( exp ` A ) x. ( exp ` -u A ) ) = 1 ) |