This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function maps real arguments one-to-one to positive reals. (Contributed by Steve Rodriguez, 25-Aug-2007) (Revised by Mario Carneiro, 10-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reeff1 | |- ( exp |` RR ) : RR -1-1-> RR+ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eff | |- exp : CC --> CC |
|
| 2 | ffn | |- ( exp : CC --> CC -> exp Fn CC ) |
|
| 3 | 1 2 | ax-mp | |- exp Fn CC |
| 4 | ax-resscn | |- RR C_ CC |
|
| 5 | fnssres | |- ( ( exp Fn CC /\ RR C_ CC ) -> ( exp |` RR ) Fn RR ) |
|
| 6 | 3 4 5 | mp2an | |- ( exp |` RR ) Fn RR |
| 7 | fvres | |- ( x e. RR -> ( ( exp |` RR ) ` x ) = ( exp ` x ) ) |
|
| 8 | rpefcl | |- ( x e. RR -> ( exp ` x ) e. RR+ ) |
|
| 9 | 7 8 | eqeltrd | |- ( x e. RR -> ( ( exp |` RR ) ` x ) e. RR+ ) |
| 10 | 9 | rgen | |- A. x e. RR ( ( exp |` RR ) ` x ) e. RR+ |
| 11 | ffnfv | |- ( ( exp |` RR ) : RR --> RR+ <-> ( ( exp |` RR ) Fn RR /\ A. x e. RR ( ( exp |` RR ) ` x ) e. RR+ ) ) |
|
| 12 | 6 10 11 | mpbir2an | |- ( exp |` RR ) : RR --> RR+ |
| 13 | fvres | |- ( y e. RR -> ( ( exp |` RR ) ` y ) = ( exp ` y ) ) |
|
| 14 | 7 13 | eqeqan12d | |- ( ( x e. RR /\ y e. RR ) -> ( ( ( exp |` RR ) ` x ) = ( ( exp |` RR ) ` y ) <-> ( exp ` x ) = ( exp ` y ) ) ) |
| 15 | reef11 | |- ( ( x e. RR /\ y e. RR ) -> ( ( exp ` x ) = ( exp ` y ) <-> x = y ) ) |
|
| 16 | 15 | biimpd | |- ( ( x e. RR /\ y e. RR ) -> ( ( exp ` x ) = ( exp ` y ) -> x = y ) ) |
| 17 | 14 16 | sylbid | |- ( ( x e. RR /\ y e. RR ) -> ( ( ( exp |` RR ) ` x ) = ( ( exp |` RR ) ` y ) -> x = y ) ) |
| 18 | 17 | rgen2 | |- A. x e. RR A. y e. RR ( ( ( exp |` RR ) ` x ) = ( ( exp |` RR ) ` y ) -> x = y ) |
| 19 | dff13 | |- ( ( exp |` RR ) : RR -1-1-> RR+ <-> ( ( exp |` RR ) : RR --> RR+ /\ A. x e. RR A. y e. RR ( ( ( exp |` RR ) ` x ) = ( ( exp |` RR ) ` y ) -> x = y ) ) ) |
|
| 20 | 12 18 19 | mpbir2an | |- ( exp |` RR ) : RR -1-1-> RR+ |