This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Mutual reciprocals. (Contributed by Paul Chapman, 18-Oct-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rec11r | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( 1 / A ) = B <-> ( 1 / B ) = A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1cnd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> 1 e. CC ) |
|
| 2 | simprl | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> B e. CC ) |
|
| 3 | simpll | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> A e. CC ) |
|
| 4 | simplr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> A =/= 0 ) |
|
| 5 | divmul2 | |- ( ( 1 e. CC /\ B e. CC /\ ( A e. CC /\ A =/= 0 ) ) -> ( ( 1 / A ) = B <-> 1 = ( A x. B ) ) ) |
|
| 6 | 1 2 3 4 5 | syl112anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( 1 / A ) = B <-> 1 = ( A x. B ) ) ) |
| 7 | simprr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> B =/= 0 ) |
|
| 8 | divmul3 | |- ( ( 1 e. CC /\ A e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( 1 / B ) = A <-> 1 = ( A x. B ) ) ) |
|
| 9 | 1 3 2 7 8 | syl112anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( 1 / B ) = A <-> 1 = ( A x. B ) ) ) |
| 10 | 6 9 | bitr4d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( 1 / A ) = B <-> ( 1 / B ) = A ) ) |