This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for reconn . Connectedness in the reals-easy direction. (Contributed by Jeff Hankins, 13-Jul-2009) (Proof shortened by Mario Carneiro, 9-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reconnlem1 | |- ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) -> ( X [,] Y ) C_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr | |- ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) -> ( ( topGen ` ran (,) ) |`t A ) e. Conn ) |
|
| 2 | retopon | |- ( topGen ` ran (,) ) e. ( TopOn ` RR ) |
|
| 3 | 2 | a1i | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( topGen ` ran (,) ) e. ( TopOn ` RR ) ) |
| 4 | simplll | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> A C_ RR ) |
|
| 5 | iooretop | |- ( -oo (,) z ) e. ( topGen ` ran (,) ) |
|
| 6 | 5 | a1i | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( -oo (,) z ) e. ( topGen ` ran (,) ) ) |
| 7 | iooretop | |- ( z (,) +oo ) e. ( topGen ` ran (,) ) |
|
| 8 | 7 | a1i | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( z (,) +oo ) e. ( topGen ` ran (,) ) ) |
| 9 | simplrl | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> X e. A ) |
|
| 10 | 4 9 | sseldd | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> X e. RR ) |
| 11 | 10 | mnfltd | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> -oo < X ) |
| 12 | eldifn | |- ( z e. ( ( X [,] Y ) \ A ) -> -. z e. A ) |
|
| 13 | 12 | adantl | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> -. z e. A ) |
| 14 | eleq1 | |- ( X = z -> ( X e. A <-> z e. A ) ) |
|
| 15 | 9 14 | syl5ibcom | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( X = z -> z e. A ) ) |
| 16 | 13 15 | mtod | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> -. X = z ) |
| 17 | eldifi | |- ( z e. ( ( X [,] Y ) \ A ) -> z e. ( X [,] Y ) ) |
|
| 18 | 17 | adantl | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> z e. ( X [,] Y ) ) |
| 19 | simplrr | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> Y e. A ) |
|
| 20 | 4 19 | sseldd | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> Y e. RR ) |
| 21 | elicc2 | |- ( ( X e. RR /\ Y e. RR ) -> ( z e. ( X [,] Y ) <-> ( z e. RR /\ X <_ z /\ z <_ Y ) ) ) |
|
| 22 | 10 20 21 | syl2anc | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( z e. ( X [,] Y ) <-> ( z e. RR /\ X <_ z /\ z <_ Y ) ) ) |
| 23 | 18 22 | mpbid | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( z e. RR /\ X <_ z /\ z <_ Y ) ) |
| 24 | 23 | simp2d | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> X <_ z ) |
| 25 | 23 | simp1d | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> z e. RR ) |
| 26 | 10 25 | leloed | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( X <_ z <-> ( X < z \/ X = z ) ) ) |
| 27 | 24 26 | mpbid | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( X < z \/ X = z ) ) |
| 28 | 27 | ord | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( -. X < z -> X = z ) ) |
| 29 | 16 28 | mt3d | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> X < z ) |
| 30 | mnfxr | |- -oo e. RR* |
|
| 31 | 25 | rexrd | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> z e. RR* ) |
| 32 | elioo2 | |- ( ( -oo e. RR* /\ z e. RR* ) -> ( X e. ( -oo (,) z ) <-> ( X e. RR /\ -oo < X /\ X < z ) ) ) |
|
| 33 | 30 31 32 | sylancr | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( X e. ( -oo (,) z ) <-> ( X e. RR /\ -oo < X /\ X < z ) ) ) |
| 34 | 10 11 29 33 | mpbir3and | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> X e. ( -oo (,) z ) ) |
| 35 | inelcm | |- ( ( X e. ( -oo (,) z ) /\ X e. A ) -> ( ( -oo (,) z ) i^i A ) =/= (/) ) |
|
| 36 | 34 9 35 | syl2anc | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( ( -oo (,) z ) i^i A ) =/= (/) ) |
| 37 | eleq1 | |- ( z = Y -> ( z e. A <-> Y e. A ) ) |
|
| 38 | 19 37 | syl5ibrcom | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( z = Y -> z e. A ) ) |
| 39 | 13 38 | mtod | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> -. z = Y ) |
| 40 | 23 | simp3d | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> z <_ Y ) |
| 41 | 25 20 | leloed | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( z <_ Y <-> ( z < Y \/ z = Y ) ) ) |
| 42 | 40 41 | mpbid | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( z < Y \/ z = Y ) ) |
| 43 | 42 | ord | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( -. z < Y -> z = Y ) ) |
| 44 | 39 43 | mt3d | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> z < Y ) |
| 45 | 20 | ltpnfd | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> Y < +oo ) |
| 46 | pnfxr | |- +oo e. RR* |
|
| 47 | elioo2 | |- ( ( z e. RR* /\ +oo e. RR* ) -> ( Y e. ( z (,) +oo ) <-> ( Y e. RR /\ z < Y /\ Y < +oo ) ) ) |
|
| 48 | 31 46 47 | sylancl | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( Y e. ( z (,) +oo ) <-> ( Y e. RR /\ z < Y /\ Y < +oo ) ) ) |
| 49 | 20 44 45 48 | mpbir3and | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> Y e. ( z (,) +oo ) ) |
| 50 | inelcm | |- ( ( Y e. ( z (,) +oo ) /\ Y e. A ) -> ( ( z (,) +oo ) i^i A ) =/= (/) ) |
|
| 51 | 49 19 50 | syl2anc | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( ( z (,) +oo ) i^i A ) =/= (/) ) |
| 52 | inss1 | |- ( ( ( -oo (,) z ) i^i ( z (,) +oo ) ) i^i A ) C_ ( ( -oo (,) z ) i^i ( z (,) +oo ) ) |
|
| 53 | 31 30 | jctil | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( -oo e. RR* /\ z e. RR* ) ) |
| 54 | 31 46 | jctir | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( z e. RR* /\ +oo e. RR* ) ) |
| 55 | 25 | leidd | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> z <_ z ) |
| 56 | ioodisj | |- ( ( ( ( -oo e. RR* /\ z e. RR* ) /\ ( z e. RR* /\ +oo e. RR* ) ) /\ z <_ z ) -> ( ( -oo (,) z ) i^i ( z (,) +oo ) ) = (/) ) |
|
| 57 | 53 54 55 56 | syl21anc | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( ( -oo (,) z ) i^i ( z (,) +oo ) ) = (/) ) |
| 58 | sseq0 | |- ( ( ( ( ( -oo (,) z ) i^i ( z (,) +oo ) ) i^i A ) C_ ( ( -oo (,) z ) i^i ( z (,) +oo ) ) /\ ( ( -oo (,) z ) i^i ( z (,) +oo ) ) = (/) ) -> ( ( ( -oo (,) z ) i^i ( z (,) +oo ) ) i^i A ) = (/) ) |
|
| 59 | 52 57 58 | sylancr | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( ( ( -oo (,) z ) i^i ( z (,) +oo ) ) i^i A ) = (/) ) |
| 60 | 30 | a1i | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> -oo e. RR* ) |
| 61 | 46 | a1i | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> +oo e. RR* ) |
| 62 | 25 | mnfltd | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> -oo < z ) |
| 63 | 25 | ltpnfd | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> z < +oo ) |
| 64 | ioojoin | |- ( ( ( -oo e. RR* /\ z e. RR* /\ +oo e. RR* ) /\ ( -oo < z /\ z < +oo ) ) -> ( ( ( -oo (,) z ) u. { z } ) u. ( z (,) +oo ) ) = ( -oo (,) +oo ) ) |
|
| 65 | 60 31 61 62 63 64 | syl32anc | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( ( ( -oo (,) z ) u. { z } ) u. ( z (,) +oo ) ) = ( -oo (,) +oo ) ) |
| 66 | unass | |- ( ( ( -oo (,) z ) u. { z } ) u. ( z (,) +oo ) ) = ( ( -oo (,) z ) u. ( { z } u. ( z (,) +oo ) ) ) |
|
| 67 | un12 | |- ( ( -oo (,) z ) u. ( { z } u. ( z (,) +oo ) ) ) = ( { z } u. ( ( -oo (,) z ) u. ( z (,) +oo ) ) ) |
|
| 68 | 66 67 | eqtri | |- ( ( ( -oo (,) z ) u. { z } ) u. ( z (,) +oo ) ) = ( { z } u. ( ( -oo (,) z ) u. ( z (,) +oo ) ) ) |
| 69 | ioomax | |- ( -oo (,) +oo ) = RR |
|
| 70 | 65 68 69 | 3eqtr3g | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( { z } u. ( ( -oo (,) z ) u. ( z (,) +oo ) ) ) = RR ) |
| 71 | 4 70 | sseqtrrd | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> A C_ ( { z } u. ( ( -oo (,) z ) u. ( z (,) +oo ) ) ) ) |
| 72 | disjsn | |- ( ( A i^i { z } ) = (/) <-> -. z e. A ) |
|
| 73 | 13 72 | sylibr | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( A i^i { z } ) = (/) ) |
| 74 | disjssun | |- ( ( A i^i { z } ) = (/) -> ( A C_ ( { z } u. ( ( -oo (,) z ) u. ( z (,) +oo ) ) ) <-> A C_ ( ( -oo (,) z ) u. ( z (,) +oo ) ) ) ) |
|
| 75 | 73 74 | syl | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( A C_ ( { z } u. ( ( -oo (,) z ) u. ( z (,) +oo ) ) ) <-> A C_ ( ( -oo (,) z ) u. ( z (,) +oo ) ) ) ) |
| 76 | 71 75 | mpbid | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> A C_ ( ( -oo (,) z ) u. ( z (,) +oo ) ) ) |
| 77 | 3 4 6 8 36 51 59 76 | nconnsubb | |- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> -. ( ( topGen ` ran (,) ) |`t A ) e. Conn ) |
| 78 | 77 | ex | |- ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) -> ( z e. ( ( X [,] Y ) \ A ) -> -. ( ( topGen ` ran (,) ) |`t A ) e. Conn ) ) |
| 79 | 1 78 | mt2d | |- ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) -> -. z e. ( ( X [,] Y ) \ A ) ) |
| 80 | 79 | eq0rdv | |- ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) -> ( ( X [,] Y ) \ A ) = (/) ) |
| 81 | ssdif0 | |- ( ( X [,] Y ) C_ A <-> ( ( X [,] Y ) \ A ) = (/) ) |
|
| 82 | 80 81 | sylibr | |- ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) -> ( X [,] Y ) C_ A ) |