This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Disconnectedness for a subspace. (Contributed by FL, 29-May-2014) (Proof shortened by Mario Carneiro, 10-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nconnsubb.2 | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| nconnsubb.3 | |- ( ph -> A C_ X ) |
||
| nconnsubb.4 | |- ( ph -> U e. J ) |
||
| nconnsubb.5 | |- ( ph -> V e. J ) |
||
| nconnsubb.6 | |- ( ph -> ( U i^i A ) =/= (/) ) |
||
| nconnsubb.7 | |- ( ph -> ( V i^i A ) =/= (/) ) |
||
| nconnsubb.8 | |- ( ph -> ( ( U i^i V ) i^i A ) = (/) ) |
||
| nconnsubb.9 | |- ( ph -> A C_ ( U u. V ) ) |
||
| Assertion | nconnsubb | |- ( ph -> -. ( J |`t A ) e. Conn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nconnsubb.2 | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| 2 | nconnsubb.3 | |- ( ph -> A C_ X ) |
|
| 3 | nconnsubb.4 | |- ( ph -> U e. J ) |
|
| 4 | nconnsubb.5 | |- ( ph -> V e. J ) |
|
| 5 | nconnsubb.6 | |- ( ph -> ( U i^i A ) =/= (/) ) |
|
| 6 | nconnsubb.7 | |- ( ph -> ( V i^i A ) =/= (/) ) |
|
| 7 | nconnsubb.8 | |- ( ph -> ( ( U i^i V ) i^i A ) = (/) ) |
|
| 8 | nconnsubb.9 | |- ( ph -> A C_ ( U u. V ) ) |
|
| 9 | connsuba | |- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( ( J |`t A ) e. Conn <-> A. x e. J A. y e. J ( ( ( x i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( x i^i y ) i^i A ) = (/) ) -> ( ( x u. y ) i^i A ) =/= A ) ) ) |
|
| 10 | 1 2 9 | syl2anc | |- ( ph -> ( ( J |`t A ) e. Conn <-> A. x e. J A. y e. J ( ( ( x i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( x i^i y ) i^i A ) = (/) ) -> ( ( x u. y ) i^i A ) =/= A ) ) ) |
| 11 | 5 6 7 | 3jca | |- ( ph -> ( ( U i^i A ) =/= (/) /\ ( V i^i A ) =/= (/) /\ ( ( U i^i V ) i^i A ) = (/) ) ) |
| 12 | ineq1 | |- ( x = U -> ( x i^i A ) = ( U i^i A ) ) |
|
| 13 | 12 | neeq1d | |- ( x = U -> ( ( x i^i A ) =/= (/) <-> ( U i^i A ) =/= (/) ) ) |
| 14 | ineq1 | |- ( x = U -> ( x i^i y ) = ( U i^i y ) ) |
|
| 15 | 14 | ineq1d | |- ( x = U -> ( ( x i^i y ) i^i A ) = ( ( U i^i y ) i^i A ) ) |
| 16 | 15 | eqeq1d | |- ( x = U -> ( ( ( x i^i y ) i^i A ) = (/) <-> ( ( U i^i y ) i^i A ) = (/) ) ) |
| 17 | 13 16 | 3anbi13d | |- ( x = U -> ( ( ( x i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( x i^i y ) i^i A ) = (/) ) <-> ( ( U i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( U i^i y ) i^i A ) = (/) ) ) ) |
| 18 | uneq1 | |- ( x = U -> ( x u. y ) = ( U u. y ) ) |
|
| 19 | 18 | ineq1d | |- ( x = U -> ( ( x u. y ) i^i A ) = ( ( U u. y ) i^i A ) ) |
| 20 | 19 | neeq1d | |- ( x = U -> ( ( ( x u. y ) i^i A ) =/= A <-> ( ( U u. y ) i^i A ) =/= A ) ) |
| 21 | 17 20 | imbi12d | |- ( x = U -> ( ( ( ( x i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( x i^i y ) i^i A ) = (/) ) -> ( ( x u. y ) i^i A ) =/= A ) <-> ( ( ( U i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( U i^i y ) i^i A ) = (/) ) -> ( ( U u. y ) i^i A ) =/= A ) ) ) |
| 22 | ineq1 | |- ( y = V -> ( y i^i A ) = ( V i^i A ) ) |
|
| 23 | 22 | neeq1d | |- ( y = V -> ( ( y i^i A ) =/= (/) <-> ( V i^i A ) =/= (/) ) ) |
| 24 | ineq2 | |- ( y = V -> ( U i^i y ) = ( U i^i V ) ) |
|
| 25 | 24 | ineq1d | |- ( y = V -> ( ( U i^i y ) i^i A ) = ( ( U i^i V ) i^i A ) ) |
| 26 | 25 | eqeq1d | |- ( y = V -> ( ( ( U i^i y ) i^i A ) = (/) <-> ( ( U i^i V ) i^i A ) = (/) ) ) |
| 27 | 23 26 | 3anbi23d | |- ( y = V -> ( ( ( U i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( U i^i y ) i^i A ) = (/) ) <-> ( ( U i^i A ) =/= (/) /\ ( V i^i A ) =/= (/) /\ ( ( U i^i V ) i^i A ) = (/) ) ) ) |
| 28 | sseqin2 | |- ( A C_ ( U u. y ) <-> ( ( U u. y ) i^i A ) = A ) |
|
| 29 | 28 | necon3bbii | |- ( -. A C_ ( U u. y ) <-> ( ( U u. y ) i^i A ) =/= A ) |
| 30 | uneq2 | |- ( y = V -> ( U u. y ) = ( U u. V ) ) |
|
| 31 | 30 | sseq2d | |- ( y = V -> ( A C_ ( U u. y ) <-> A C_ ( U u. V ) ) ) |
| 32 | 31 | notbid | |- ( y = V -> ( -. A C_ ( U u. y ) <-> -. A C_ ( U u. V ) ) ) |
| 33 | 29 32 | bitr3id | |- ( y = V -> ( ( ( U u. y ) i^i A ) =/= A <-> -. A C_ ( U u. V ) ) ) |
| 34 | 27 33 | imbi12d | |- ( y = V -> ( ( ( ( U i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( U i^i y ) i^i A ) = (/) ) -> ( ( U u. y ) i^i A ) =/= A ) <-> ( ( ( U i^i A ) =/= (/) /\ ( V i^i A ) =/= (/) /\ ( ( U i^i V ) i^i A ) = (/) ) -> -. A C_ ( U u. V ) ) ) ) |
| 35 | 21 34 | rspc2v | |- ( ( U e. J /\ V e. J ) -> ( A. x e. J A. y e. J ( ( ( x i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( x i^i y ) i^i A ) = (/) ) -> ( ( x u. y ) i^i A ) =/= A ) -> ( ( ( U i^i A ) =/= (/) /\ ( V i^i A ) =/= (/) /\ ( ( U i^i V ) i^i A ) = (/) ) -> -. A C_ ( U u. V ) ) ) ) |
| 36 | 3 4 35 | syl2anc | |- ( ph -> ( A. x e. J A. y e. J ( ( ( x i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( x i^i y ) i^i A ) = (/) ) -> ( ( x u. y ) i^i A ) =/= A ) -> ( ( ( U i^i A ) =/= (/) /\ ( V i^i A ) =/= (/) /\ ( ( U i^i V ) i^i A ) = (/) ) -> -. A C_ ( U u. V ) ) ) ) |
| 37 | 11 36 | mpid | |- ( ph -> ( A. x e. J A. y e. J ( ( ( x i^i A ) =/= (/) /\ ( y i^i A ) =/= (/) /\ ( ( x i^i y ) i^i A ) = (/) ) -> ( ( x u. y ) i^i A ) =/= A ) -> -. A C_ ( U u. V ) ) ) |
| 38 | 10 37 | sylbid | |- ( ph -> ( ( J |`t A ) e. Conn -> -. A C_ ( U u. V ) ) ) |
| 39 | 8 38 | mt2d | |- ( ph -> -. ( J |`t A ) e. Conn ) |