This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for reconn . Connectedness in the reals-easy direction. (Contributed by Jeff Hankins, 13-Jul-2009) (Proof shortened by Mario Carneiro, 9-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reconnlem1 | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( 𝑋 [,] 𝑌 ) ⊆ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) | |
| 2 | retopon | ⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) | |
| 3 | 2 | a1i | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) ) |
| 4 | simplll | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝐴 ⊆ ℝ ) | |
| 5 | iooretop | ⊢ ( -∞ (,) 𝑧 ) ∈ ( topGen ‘ ran (,) ) | |
| 6 | 5 | a1i | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( -∞ (,) 𝑧 ) ∈ ( topGen ‘ ran (,) ) ) |
| 7 | iooretop | ⊢ ( 𝑧 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) | |
| 8 | 7 | a1i | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( 𝑧 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) ) |
| 9 | simplrl | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝑋 ∈ 𝐴 ) | |
| 10 | 4 9 | sseldd | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝑋 ∈ ℝ ) |
| 11 | 10 | mnfltd | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → -∞ < 𝑋 ) |
| 12 | eldifn | ⊢ ( 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) → ¬ 𝑧 ∈ 𝐴 ) | |
| 13 | 12 | adantl | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ¬ 𝑧 ∈ 𝐴 ) |
| 14 | eleq1 | ⊢ ( 𝑋 = 𝑧 → ( 𝑋 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) | |
| 15 | 9 14 | syl5ibcom | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( 𝑋 = 𝑧 → 𝑧 ∈ 𝐴 ) ) |
| 16 | 13 15 | mtod | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ¬ 𝑋 = 𝑧 ) |
| 17 | eldifi | ⊢ ( 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) → 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) | |
| 18 | 17 | adantl | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ) |
| 19 | simplrr | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝑌 ∈ 𝐴 ) | |
| 20 | 4 19 | sseldd | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝑌 ∈ ℝ ) |
| 21 | elicc2 | ⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝑧 ∈ ℝ ∧ 𝑋 ≤ 𝑧 ∧ 𝑧 ≤ 𝑌 ) ) ) | |
| 22 | 10 20 21 | syl2anc | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( 𝑧 ∈ ( 𝑋 [,] 𝑌 ) ↔ ( 𝑧 ∈ ℝ ∧ 𝑋 ≤ 𝑧 ∧ 𝑧 ≤ 𝑌 ) ) ) |
| 23 | 18 22 | mpbid | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( 𝑧 ∈ ℝ ∧ 𝑋 ≤ 𝑧 ∧ 𝑧 ≤ 𝑌 ) ) |
| 24 | 23 | simp2d | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝑋 ≤ 𝑧 ) |
| 25 | 23 | simp1d | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝑧 ∈ ℝ ) |
| 26 | 10 25 | leloed | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( 𝑋 ≤ 𝑧 ↔ ( 𝑋 < 𝑧 ∨ 𝑋 = 𝑧 ) ) ) |
| 27 | 24 26 | mpbid | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( 𝑋 < 𝑧 ∨ 𝑋 = 𝑧 ) ) |
| 28 | 27 | ord | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( ¬ 𝑋 < 𝑧 → 𝑋 = 𝑧 ) ) |
| 29 | 16 28 | mt3d | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝑋 < 𝑧 ) |
| 30 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 31 | 25 | rexrd | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝑧 ∈ ℝ* ) |
| 32 | elioo2 | ⊢ ( ( -∞ ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( 𝑋 ∈ ( -∞ (,) 𝑧 ) ↔ ( 𝑋 ∈ ℝ ∧ -∞ < 𝑋 ∧ 𝑋 < 𝑧 ) ) ) | |
| 33 | 30 31 32 | sylancr | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( 𝑋 ∈ ( -∞ (,) 𝑧 ) ↔ ( 𝑋 ∈ ℝ ∧ -∞ < 𝑋 ∧ 𝑋 < 𝑧 ) ) ) |
| 34 | 10 11 29 33 | mpbir3and | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝑋 ∈ ( -∞ (,) 𝑧 ) ) |
| 35 | inelcm | ⊢ ( ( 𝑋 ∈ ( -∞ (,) 𝑧 ) ∧ 𝑋 ∈ 𝐴 ) → ( ( -∞ (,) 𝑧 ) ∩ 𝐴 ) ≠ ∅ ) | |
| 36 | 34 9 35 | syl2anc | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( ( -∞ (,) 𝑧 ) ∩ 𝐴 ) ≠ ∅ ) |
| 37 | eleq1 | ⊢ ( 𝑧 = 𝑌 → ( 𝑧 ∈ 𝐴 ↔ 𝑌 ∈ 𝐴 ) ) | |
| 38 | 19 37 | syl5ibrcom | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( 𝑧 = 𝑌 → 𝑧 ∈ 𝐴 ) ) |
| 39 | 13 38 | mtod | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ¬ 𝑧 = 𝑌 ) |
| 40 | 23 | simp3d | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝑧 ≤ 𝑌 ) |
| 41 | 25 20 | leloed | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( 𝑧 ≤ 𝑌 ↔ ( 𝑧 < 𝑌 ∨ 𝑧 = 𝑌 ) ) ) |
| 42 | 40 41 | mpbid | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( 𝑧 < 𝑌 ∨ 𝑧 = 𝑌 ) ) |
| 43 | 42 | ord | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( ¬ 𝑧 < 𝑌 → 𝑧 = 𝑌 ) ) |
| 44 | 39 43 | mt3d | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝑧 < 𝑌 ) |
| 45 | 20 | ltpnfd | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝑌 < +∞ ) |
| 46 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 47 | elioo2 | ⊢ ( ( 𝑧 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑌 ∈ ( 𝑧 (,) +∞ ) ↔ ( 𝑌 ∈ ℝ ∧ 𝑧 < 𝑌 ∧ 𝑌 < +∞ ) ) ) | |
| 48 | 31 46 47 | sylancl | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( 𝑌 ∈ ( 𝑧 (,) +∞ ) ↔ ( 𝑌 ∈ ℝ ∧ 𝑧 < 𝑌 ∧ 𝑌 < +∞ ) ) ) |
| 49 | 20 44 45 48 | mpbir3and | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝑌 ∈ ( 𝑧 (,) +∞ ) ) |
| 50 | inelcm | ⊢ ( ( 𝑌 ∈ ( 𝑧 (,) +∞ ) ∧ 𝑌 ∈ 𝐴 ) → ( ( 𝑧 (,) +∞ ) ∩ 𝐴 ) ≠ ∅ ) | |
| 51 | 49 19 50 | syl2anc | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( ( 𝑧 (,) +∞ ) ∩ 𝐴 ) ≠ ∅ ) |
| 52 | inss1 | ⊢ ( ( ( -∞ (,) 𝑧 ) ∩ ( 𝑧 (,) +∞ ) ) ∩ 𝐴 ) ⊆ ( ( -∞ (,) 𝑧 ) ∩ ( 𝑧 (,) +∞ ) ) | |
| 53 | 31 30 | jctil | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( -∞ ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) ) |
| 54 | 31 46 | jctir | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( 𝑧 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ) |
| 55 | 25 | leidd | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝑧 ≤ 𝑧 ) |
| 56 | ioodisj | ⊢ ( ( ( ( -∞ ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) ∧ ( 𝑧 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ) ∧ 𝑧 ≤ 𝑧 ) → ( ( -∞ (,) 𝑧 ) ∩ ( 𝑧 (,) +∞ ) ) = ∅ ) | |
| 57 | 53 54 55 56 | syl21anc | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( ( -∞ (,) 𝑧 ) ∩ ( 𝑧 (,) +∞ ) ) = ∅ ) |
| 58 | sseq0 | ⊢ ( ( ( ( ( -∞ (,) 𝑧 ) ∩ ( 𝑧 (,) +∞ ) ) ∩ 𝐴 ) ⊆ ( ( -∞ (,) 𝑧 ) ∩ ( 𝑧 (,) +∞ ) ) ∧ ( ( -∞ (,) 𝑧 ) ∩ ( 𝑧 (,) +∞ ) ) = ∅ ) → ( ( ( -∞ (,) 𝑧 ) ∩ ( 𝑧 (,) +∞ ) ) ∩ 𝐴 ) = ∅ ) | |
| 59 | 52 57 58 | sylancr | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( ( ( -∞ (,) 𝑧 ) ∩ ( 𝑧 (,) +∞ ) ) ∩ 𝐴 ) = ∅ ) |
| 60 | 30 | a1i | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → -∞ ∈ ℝ* ) |
| 61 | 46 | a1i | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → +∞ ∈ ℝ* ) |
| 62 | 25 | mnfltd | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → -∞ < 𝑧 ) |
| 63 | 25 | ltpnfd | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝑧 < +∞ ) |
| 64 | ioojoin | ⊢ ( ( ( -∞ ∈ ℝ* ∧ 𝑧 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( -∞ < 𝑧 ∧ 𝑧 < +∞ ) ) → ( ( ( -∞ (,) 𝑧 ) ∪ { 𝑧 } ) ∪ ( 𝑧 (,) +∞ ) ) = ( -∞ (,) +∞ ) ) | |
| 65 | 60 31 61 62 63 64 | syl32anc | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( ( ( -∞ (,) 𝑧 ) ∪ { 𝑧 } ) ∪ ( 𝑧 (,) +∞ ) ) = ( -∞ (,) +∞ ) ) |
| 66 | unass | ⊢ ( ( ( -∞ (,) 𝑧 ) ∪ { 𝑧 } ) ∪ ( 𝑧 (,) +∞ ) ) = ( ( -∞ (,) 𝑧 ) ∪ ( { 𝑧 } ∪ ( 𝑧 (,) +∞ ) ) ) | |
| 67 | un12 | ⊢ ( ( -∞ (,) 𝑧 ) ∪ ( { 𝑧 } ∪ ( 𝑧 (,) +∞ ) ) ) = ( { 𝑧 } ∪ ( ( -∞ (,) 𝑧 ) ∪ ( 𝑧 (,) +∞ ) ) ) | |
| 68 | 66 67 | eqtri | ⊢ ( ( ( -∞ (,) 𝑧 ) ∪ { 𝑧 } ) ∪ ( 𝑧 (,) +∞ ) ) = ( { 𝑧 } ∪ ( ( -∞ (,) 𝑧 ) ∪ ( 𝑧 (,) +∞ ) ) ) |
| 69 | ioomax | ⊢ ( -∞ (,) +∞ ) = ℝ | |
| 70 | 65 68 69 | 3eqtr3g | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( { 𝑧 } ∪ ( ( -∞ (,) 𝑧 ) ∪ ( 𝑧 (,) +∞ ) ) ) = ℝ ) |
| 71 | 4 70 | sseqtrrd | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝐴 ⊆ ( { 𝑧 } ∪ ( ( -∞ (,) 𝑧 ) ∪ ( 𝑧 (,) +∞ ) ) ) ) |
| 72 | disjsn | ⊢ ( ( 𝐴 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝐴 ) | |
| 73 | 13 72 | sylibr | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( 𝐴 ∩ { 𝑧 } ) = ∅ ) |
| 74 | disjssun | ⊢ ( ( 𝐴 ∩ { 𝑧 } ) = ∅ → ( 𝐴 ⊆ ( { 𝑧 } ∪ ( ( -∞ (,) 𝑧 ) ∪ ( 𝑧 (,) +∞ ) ) ) ↔ 𝐴 ⊆ ( ( -∞ (,) 𝑧 ) ∪ ( 𝑧 (,) +∞ ) ) ) ) | |
| 75 | 73 74 | syl | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ( 𝐴 ⊆ ( { 𝑧 } ∪ ( ( -∞ (,) 𝑧 ) ∪ ( 𝑧 (,) +∞ ) ) ) ↔ 𝐴 ⊆ ( ( -∞ (,) 𝑧 ) ∪ ( 𝑧 (,) +∞ ) ) ) ) |
| 76 | 71 75 | mpbid | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → 𝐴 ⊆ ( ( -∞ (,) 𝑧 ) ∪ ( 𝑧 (,) +∞ ) ) ) |
| 77 | 3 4 6 8 36 51 59 76 | nconnsubb | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) ∧ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) → ¬ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) |
| 78 | 77 | ex | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) → ¬ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ) |
| 79 | 1 78 | mt2d | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ¬ 𝑧 ∈ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) ) |
| 80 | 79 | eq0rdv | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) = ∅ ) |
| 81 | ssdif0 | ⊢ ( ( 𝑋 [,] 𝑌 ) ⊆ 𝐴 ↔ ( ( 𝑋 [,] 𝑌 ) ∖ 𝐴 ) = ∅ ) | |
| 82 | 80 81 | sylibr | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ) → ( 𝑋 [,] 𝑌 ) ⊆ 𝐴 ) |