This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem eq0rdv

Description: Deduction for equality to the empty set. (Contributed by NM, 11-Jul-2014) Avoid ax-8 , df-clel . (Revised by GG, 6-Sep-2024)

Ref Expression
Hypothesis eq0rdv.1
|- ( ph -> -. x e. A )
Assertion eq0rdv
|- ( ph -> A = (/) )

Proof

Step Hyp Ref Expression
1 eq0rdv.1
 |-  ( ph -> -. x e. A )
2 1 alrimiv
 |-  ( ph -> A. x -. x e. A )
3 eq0
 |-  ( A = (/) <-> A. x -. x e. A )
4 2 3 sylibr
 |-  ( ph -> A = (/) )