This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the upper bound of one open interval is less than or equal to the lower bound of the other, the intervals are disjoint. (Contributed by Jeff Hankins, 13-Jul-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ioodisj | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) /\ B <_ C ) -> ( ( A (,) B ) i^i ( C (,) D ) ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iooss1 | |- ( ( B e. RR* /\ B <_ C ) -> ( C (,) D ) C_ ( B (,) D ) ) |
|
| 2 | 1 | ad4ant24 | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) /\ B <_ C ) -> ( C (,) D ) C_ ( B (,) D ) ) |
| 3 | ioossicc | |- ( B (,) D ) C_ ( B [,] D ) |
|
| 4 | 2 3 | sstrdi | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) /\ B <_ C ) -> ( C (,) D ) C_ ( B [,] D ) ) |
| 5 | sslin | |- ( ( C (,) D ) C_ ( B [,] D ) -> ( ( A (,) B ) i^i ( C (,) D ) ) C_ ( ( A (,) B ) i^i ( B [,] D ) ) ) |
|
| 6 | 4 5 | syl | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) /\ B <_ C ) -> ( ( A (,) B ) i^i ( C (,) D ) ) C_ ( ( A (,) B ) i^i ( B [,] D ) ) ) |
| 7 | simplll | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) /\ B <_ C ) -> A e. RR* ) |
|
| 8 | simpllr | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) /\ B <_ C ) -> B e. RR* ) |
|
| 9 | simplrr | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) /\ B <_ C ) -> D e. RR* ) |
|
| 10 | df-ioo | |- (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } ) |
|
| 11 | df-icc | |- [,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z <_ y ) } ) |
|
| 12 | xrlenlt | |- ( ( B e. RR* /\ w e. RR* ) -> ( B <_ w <-> -. w < B ) ) |
|
| 13 | 10 11 12 | ixxdisj | |- ( ( A e. RR* /\ B e. RR* /\ D e. RR* ) -> ( ( A (,) B ) i^i ( B [,] D ) ) = (/) ) |
| 14 | 7 8 9 13 | syl3anc | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) /\ B <_ C ) -> ( ( A (,) B ) i^i ( B [,] D ) ) = (/) ) |
| 15 | 6 14 | sseqtrd | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) /\ B <_ C ) -> ( ( A (,) B ) i^i ( C (,) D ) ) C_ (/) ) |
| 16 | ss0 | |- ( ( ( A (,) B ) i^i ( C (,) D ) ) C_ (/) -> ( ( A (,) B ) i^i ( C (,) D ) ) = (/) ) |
|
| 17 | 15 16 | syl | |- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) /\ B <_ C ) -> ( ( A (,) B ) i^i ( C (,) D ) ) = (/) ) |