This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There exists a number between any two positive fractions. Proposition 9-2.6(i) of Gleason p. 120. (Contributed by NM, 17-Mar-1996) (Revised by Mario Carneiro, 10-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltbtwnnq | |- ( AE. x ( A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelnq | |- |
|
| 2 | 1 | brel | |- ( A( A e. Q. /\ B e. Q. ) ) |
| 3 | 2 | simprd | |- ( AB e. Q. ) |
| 4 | ltexnq | |- ( B e. Q. -> ( AE. y ( A +Q y ) = B ) ) |
|
| 5 | eleq1 | |- ( ( A +Q y ) = B -> ( ( A +Q y ) e. Q. <-> B e. Q. ) ) |
|
| 6 | 5 | biimparc | |- ( ( B e. Q. /\ ( A +Q y ) = B ) -> ( A +Q y ) e. Q. ) |
| 7 | addnqf | |- +Q : ( Q. X. Q. ) --> Q. |
|
| 8 | 7 | fdmi | |- dom +Q = ( Q. X. Q. ) |
| 9 | 0nnq | |- -. (/) e. Q. |
|
| 10 | 8 9 | ndmovrcl | |- ( ( A +Q y ) e. Q. -> ( A e. Q. /\ y e. Q. ) ) |
| 11 | 6 10 | syl | |- ( ( B e. Q. /\ ( A +Q y ) = B ) -> ( A e. Q. /\ y e. Q. ) ) |
| 12 | 11 | simprd | |- ( ( B e. Q. /\ ( A +Q y ) = B ) -> y e. Q. ) |
| 13 | nsmallnq | |- ( y e. Q. -> E. z z |
|
| 14 | 11 | simpld | |- ( ( B e. Q. /\ ( A +Q y ) = B ) -> A e. Q. ) |
| 15 | 1 | brel | |- ( z( z e. Q. /\ y e. Q. ) ) |
| 16 | 15 | simpld | |- ( zz e. Q. ) |
| 17 | ltaddnq | |- ( ( A e. Q. /\ z e. Q. ) -> A |
|
| 18 | 14 16 17 | syl2an | |- ( ( ( B e. Q. /\ ( A +Q y ) = B ) /\ zA |
| 19 | ltanq | |- ( A e. Q. -> ( z( A +Q z ) |
|
| 20 | 19 | biimpa | |- ( ( A e. Q. /\ z( A +Q z ) |
| 21 | 14 20 | sylan | |- ( ( ( B e. Q. /\ ( A +Q y ) = B ) /\ z( A +Q z ) |
| 22 | simplr | |- ( ( ( B e. Q. /\ ( A +Q y ) = B ) /\ z( A +Q y ) = B ) |
|
| 23 | 21 22 | breqtrd | |- ( ( ( B e. Q. /\ ( A +Q y ) = B ) /\ z( A +Q z ) |
| 24 | ovex | |- ( A +Q z ) e. _V |
|
| 25 | breq2 | |- ( x = ( A +Q z ) -> ( AA |
|
| 26 | breq1 | |- ( x = ( A +Q z ) -> ( x( A +Q z ) |
|
| 27 | 25 26 | anbi12d | |- ( x = ( A +Q z ) -> ( ( A( A |
| 28 | 24 27 | spcev | |- ( ( AE. x ( A |
| 29 | 18 23 28 | syl2anc | |- ( ( ( B e. Q. /\ ( A +Q y ) = B ) /\ zE. x ( A |
| 30 | 29 | ex | |- ( ( B e. Q. /\ ( A +Q y ) = B ) -> ( zE. x ( A |
| 31 | 30 | exlimdv | |- ( ( B e. Q. /\ ( A +Q y ) = B ) -> ( E. z zE. x ( A |
| 32 | 13 31 | syl5 | |- ( ( B e. Q. /\ ( A +Q y ) = B ) -> ( y e. Q. -> E. x ( A |
| 33 | 12 32 | mpd | |- ( ( B e. Q. /\ ( A +Q y ) = B ) -> E. x ( A |
| 34 | 33 | ex | |- ( B e. Q. -> ( ( A +Q y ) = B -> E. x ( A |
| 35 | 34 | exlimdv | |- ( B e. Q. -> ( E. y ( A +Q y ) = B -> E. x ( A |
| 36 | 4 35 | sylbid | |- ( B e. Q. -> ( AE. x ( A |
| 37 | 3 36 | mpcom | |- ( AE. x ( A |
| 38 | ltsonq | |- |
|
| 39 | 38 1 | sotri | |- ( ( AA |
| 40 | 39 | exlimiv | |- ( E. x ( AA |
| 41 | 37 40 | impbii | |- ( AE. x ( A |