This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Domain of reciprocal on positive fractions. (Contributed by NM, 6-Mar-1996) (Revised by Mario Carneiro, 10-Jul-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmrecnq | |- dom *Q = Q. |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rq | |- *Q = ( `' .Q " { 1Q } ) |
|
| 2 | cnvimass | |- ( `' .Q " { 1Q } ) C_ dom .Q |
|
| 3 | 1 2 | eqsstri | |- *Q C_ dom .Q |
| 4 | mulnqf | |- .Q : ( Q. X. Q. ) --> Q. |
|
| 5 | 4 | fdmi | |- dom .Q = ( Q. X. Q. ) |
| 6 | 3 5 | sseqtri | |- *Q C_ ( Q. X. Q. ) |
| 7 | dmss | |- ( *Q C_ ( Q. X. Q. ) -> dom *Q C_ dom ( Q. X. Q. ) ) |
|
| 8 | 6 7 | ax-mp | |- dom *Q C_ dom ( Q. X. Q. ) |
| 9 | dmxpid | |- dom ( Q. X. Q. ) = Q. |
|
| 10 | 8 9 | sseqtri | |- dom *Q C_ Q. |
| 11 | recclnq | |- ( x e. Q. -> ( *Q ` x ) e. Q. ) |
|
| 12 | opelxpi | |- ( ( x e. Q. /\ ( *Q ` x ) e. Q. ) -> <. x , ( *Q ` x ) >. e. ( Q. X. Q. ) ) |
|
| 13 | 11 12 | mpdan | |- ( x e. Q. -> <. x , ( *Q ` x ) >. e. ( Q. X. Q. ) ) |
| 14 | df-ov | |- ( x .Q ( *Q ` x ) ) = ( .Q ` <. x , ( *Q ` x ) >. ) |
|
| 15 | recidnq | |- ( x e. Q. -> ( x .Q ( *Q ` x ) ) = 1Q ) |
|
| 16 | 14 15 | eqtr3id | |- ( x e. Q. -> ( .Q ` <. x , ( *Q ` x ) >. ) = 1Q ) |
| 17 | ffn | |- ( .Q : ( Q. X. Q. ) --> Q. -> .Q Fn ( Q. X. Q. ) ) |
|
| 18 | fniniseg | |- ( .Q Fn ( Q. X. Q. ) -> ( <. x , ( *Q ` x ) >. e. ( `' .Q " { 1Q } ) <-> ( <. x , ( *Q ` x ) >. e. ( Q. X. Q. ) /\ ( .Q ` <. x , ( *Q ` x ) >. ) = 1Q ) ) ) |
|
| 19 | 4 17 18 | mp2b | |- ( <. x , ( *Q ` x ) >. e. ( `' .Q " { 1Q } ) <-> ( <. x , ( *Q ` x ) >. e. ( Q. X. Q. ) /\ ( .Q ` <. x , ( *Q ` x ) >. ) = 1Q ) ) |
| 20 | 13 16 19 | sylanbrc | |- ( x e. Q. -> <. x , ( *Q ` x ) >. e. ( `' .Q " { 1Q } ) ) |
| 21 | 20 1 | eleqtrrdi | |- ( x e. Q. -> <. x , ( *Q ` x ) >. e. *Q ) |
| 22 | df-br | |- ( x *Q ( *Q ` x ) <-> <. x , ( *Q ` x ) >. e. *Q ) |
|
| 23 | 21 22 | sylibr | |- ( x e. Q. -> x *Q ( *Q ` x ) ) |
| 24 | vex | |- x e. _V |
|
| 25 | fvex | |- ( *Q ` x ) e. _V |
|
| 26 | 24 25 | breldm | |- ( x *Q ( *Q ` x ) -> x e. dom *Q ) |
| 27 | 23 26 | syl | |- ( x e. Q. -> x e. dom *Q ) |
| 28 | 27 | ssriv | |- Q. C_ dom *Q |
| 29 | 10 28 | eqssi | |- dom *Q = Q. |