This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reciprocal of reciprocal of positive fraction. (Contributed by NM, 26-Apr-1996) (Revised by Mario Carneiro, 29-Apr-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recrecnq | |- ( A e. Q. -> ( *Q ` ( *Q ` A ) ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2fveq3 | |- ( x = A -> ( *Q ` ( *Q ` x ) ) = ( *Q ` ( *Q ` A ) ) ) |
|
| 2 | id | |- ( x = A -> x = A ) |
|
| 3 | 1 2 | eqeq12d | |- ( x = A -> ( ( *Q ` ( *Q ` x ) ) = x <-> ( *Q ` ( *Q ` A ) ) = A ) ) |
| 4 | mulcomnq | |- ( ( *Q ` x ) .Q x ) = ( x .Q ( *Q ` x ) ) |
|
| 5 | recidnq | |- ( x e. Q. -> ( x .Q ( *Q ` x ) ) = 1Q ) |
|
| 6 | 4 5 | eqtrid | |- ( x e. Q. -> ( ( *Q ` x ) .Q x ) = 1Q ) |
| 7 | recclnq | |- ( x e. Q. -> ( *Q ` x ) e. Q. ) |
|
| 8 | recmulnq | |- ( ( *Q ` x ) e. Q. -> ( ( *Q ` ( *Q ` x ) ) = x <-> ( ( *Q ` x ) .Q x ) = 1Q ) ) |
|
| 9 | 7 8 | syl | |- ( x e. Q. -> ( ( *Q ` ( *Q ` x ) ) = x <-> ( ( *Q ` x ) .Q x ) = 1Q ) ) |
| 10 | 6 9 | mpbird | |- ( x e. Q. -> ( *Q ` ( *Q ` x ) ) = x ) |
| 11 | 3 10 | vtoclga | |- ( A e. Q. -> ( *Q ` ( *Q ` A ) ) = A ) |