This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The is no smallest positive fraction. (Contributed by NM, 26-Apr-1996) (Revised by Mario Carneiro, 10-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nsmallnq | |- ( A e. Q. -> E. x x |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfnq | |- ( A e. Q. -> E. x ( x +Q x ) = A ) |
|
| 2 | eleq1a | |- ( A e. Q. -> ( ( x +Q x ) = A -> ( x +Q x ) e. Q. ) ) |
|
| 3 | addnqf | |- +Q : ( Q. X. Q. ) --> Q. |
|
| 4 | 3 | fdmi | |- dom +Q = ( Q. X. Q. ) |
| 5 | 0nnq | |- -. (/) e. Q. |
|
| 6 | 4 5 | ndmovrcl | |- ( ( x +Q x ) e. Q. -> ( x e. Q. /\ x e. Q. ) ) |
| 7 | ltaddnq | |- ( ( x e. Q. /\ x e. Q. ) -> x |
|
| 8 | 6 7 | syl | |- ( ( x +Q x ) e. Q. -> x |
| 9 | 2 8 | syl6 | |- ( A e. Q. -> ( ( x +Q x ) = A -> x |
| 10 | breq2 | |- ( ( x +Q x ) = A -> ( xx |
|
| 11 | 9 10 | mpbidi | |- ( A e. Q. -> ( ( x +Q x ) = A -> x |
| 12 | 11 | eximdv | |- ( A e. Q. -> ( E. x ( x +Q x ) = A -> E. x x |
| 13 | 1 12 | mpd | |- ( A e. Q. -> E. x x |