This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A strict order relation is a transitive relation. (Contributed by NM, 10-Feb-1996) (Revised by Mario Carneiro, 10-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | soi.1 | |- R Or S |
|
| soi.2 | |- R C_ ( S X. S ) |
||
| Assertion | sotri | |- ( ( A R B /\ B R C ) -> A R C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | soi.1 | |- R Or S |
|
| 2 | soi.2 | |- R C_ ( S X. S ) |
|
| 3 | 2 | brel | |- ( A R B -> ( A e. S /\ B e. S ) ) |
| 4 | 3 | simpld | |- ( A R B -> A e. S ) |
| 5 | 2 | brel | |- ( B R C -> ( B e. S /\ C e. S ) ) |
| 6 | 4 5 | anim12i | |- ( ( A R B /\ B R C ) -> ( A e. S /\ ( B e. S /\ C e. S ) ) ) |
| 7 | sotr | |- ( ( R Or S /\ ( A e. S /\ B e. S /\ C e. S ) ) -> ( ( A R B /\ B R C ) -> A R C ) ) |
|
| 8 | 1 7 | mpan | |- ( ( A e. S /\ B e. S /\ C e. S ) -> ( ( A R B /\ B R C ) -> A R C ) ) |
| 9 | 8 | 3expb | |- ( ( A e. S /\ ( B e. S /\ C e. S ) ) -> ( ( A R B /\ B R C ) -> A R C ) ) |
| 10 | 6 9 | mpcom | |- ( ( A R B /\ B R C ) -> A R C ) |