This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 'Less than' is a strict ordering on positive fractions. (Contributed by NM, 19-Feb-1996) (Revised by Mario Carneiro, 4-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltsonq | |- |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpqn | |- ( x e. Q. -> x e. ( N. X. N. ) ) |
|
| 2 | 1 | adantr | |- ( ( x e. Q. /\ y e. Q. ) -> x e. ( N. X. N. ) ) |
| 3 | xp1st | |- ( x e. ( N. X. N. ) -> ( 1st ` x ) e. N. ) |
|
| 4 | 2 3 | syl | |- ( ( x e. Q. /\ y e. Q. ) -> ( 1st ` x ) e. N. ) |
| 5 | elpqn | |- ( y e. Q. -> y e. ( N. X. N. ) ) |
|
| 6 | 5 | adantl | |- ( ( x e. Q. /\ y e. Q. ) -> y e. ( N. X. N. ) ) |
| 7 | xp2nd | |- ( y e. ( N. X. N. ) -> ( 2nd ` y ) e. N. ) |
|
| 8 | 6 7 | syl | |- ( ( x e. Q. /\ y e. Q. ) -> ( 2nd ` y ) e. N. ) |
| 9 | mulclpi | |- ( ( ( 1st ` x ) e. N. /\ ( 2nd ` y ) e. N. ) -> ( ( 1st ` x ) .N ( 2nd ` y ) ) e. N. ) |
|
| 10 | 4 8 9 | syl2anc | |- ( ( x e. Q. /\ y e. Q. ) -> ( ( 1st ` x ) .N ( 2nd ` y ) ) e. N. ) |
| 11 | xp1st | |- ( y e. ( N. X. N. ) -> ( 1st ` y ) e. N. ) |
|
| 12 | 6 11 | syl | |- ( ( x e. Q. /\ y e. Q. ) -> ( 1st ` y ) e. N. ) |
| 13 | xp2nd | |- ( x e. ( N. X. N. ) -> ( 2nd ` x ) e. N. ) |
|
| 14 | 2 13 | syl | |- ( ( x e. Q. /\ y e. Q. ) -> ( 2nd ` x ) e. N. ) |
| 15 | mulclpi | |- ( ( ( 1st ` y ) e. N. /\ ( 2nd ` x ) e. N. ) -> ( ( 1st ` y ) .N ( 2nd ` x ) ) e. N. ) |
|
| 16 | 12 14 15 | syl2anc | |- ( ( x e. Q. /\ y e. Q. ) -> ( ( 1st ` y ) .N ( 2nd ` x ) ) e. N. ) |
| 17 | ltsopi | |- |
|
| 18 | sotric | |- ( ( |
|
| 19 | 17 18 | mpan | |- ( ( ( ( 1st ` x ) .N ( 2nd ` y ) ) e. N. /\ ( ( 1st ` y ) .N ( 2nd ` x ) ) e. N. ) -> ( ( ( 1st ` x ) .N ( 2nd ` y ) ) |
| 20 | 10 16 19 | syl2anc | |- ( ( x e. Q. /\ y e. Q. ) -> ( ( ( 1st ` x ) .N ( 2nd ` y ) ) |
| 21 | ordpinq | |- ( ( x e. Q. /\ y e. Q. ) -> ( x( ( 1st ` x ) .N ( 2nd ` y ) ) |
|
| 22 | fveq2 | |- ( x = y -> ( 1st ` x ) = ( 1st ` y ) ) |
|
| 23 | fveq2 | |- ( x = y -> ( 2nd ` x ) = ( 2nd ` y ) ) |
|
| 24 | 23 | eqcomd | |- ( x = y -> ( 2nd ` y ) = ( 2nd ` x ) ) |
| 25 | 22 24 | oveq12d | |- ( x = y -> ( ( 1st ` x ) .N ( 2nd ` y ) ) = ( ( 1st ` y ) .N ( 2nd ` x ) ) ) |
| 26 | enqbreq2 | |- ( ( x e. ( N. X. N. ) /\ y e. ( N. X. N. ) ) -> ( x ~Q y <-> ( ( 1st ` x ) .N ( 2nd ` y ) ) = ( ( 1st ` y ) .N ( 2nd ` x ) ) ) ) |
|
| 27 | 1 5 26 | syl2an | |- ( ( x e. Q. /\ y e. Q. ) -> ( x ~Q y <-> ( ( 1st ` x ) .N ( 2nd ` y ) ) = ( ( 1st ` y ) .N ( 2nd ` x ) ) ) ) |
| 28 | enqeq | |- ( ( x e. Q. /\ y e. Q. /\ x ~Q y ) -> x = y ) |
|
| 29 | 28 | 3expia | |- ( ( x e. Q. /\ y e. Q. ) -> ( x ~Q y -> x = y ) ) |
| 30 | 27 29 | sylbird | |- ( ( x e. Q. /\ y e. Q. ) -> ( ( ( 1st ` x ) .N ( 2nd ` y ) ) = ( ( 1st ` y ) .N ( 2nd ` x ) ) -> x = y ) ) |
| 31 | 25 30 | impbid2 | |- ( ( x e. Q. /\ y e. Q. ) -> ( x = y <-> ( ( 1st ` x ) .N ( 2nd ` y ) ) = ( ( 1st ` y ) .N ( 2nd ` x ) ) ) ) |
| 32 | ordpinq | |- ( ( y e. Q. /\ x e. Q. ) -> ( y( ( 1st ` y ) .N ( 2nd ` x ) ) |
|
| 33 | 32 | ancoms | |- ( ( x e. Q. /\ y e. Q. ) -> ( y( ( 1st ` y ) .N ( 2nd ` x ) ) |
| 34 | 31 33 | orbi12d | |- ( ( x e. Q. /\ y e. Q. ) -> ( ( x = y \/ y( ( ( 1st ` x ) .N ( 2nd ` y ) ) = ( ( 1st ` y ) .N ( 2nd ` x ) ) \/ ( ( 1st ` y ) .N ( 2nd ` x ) ) |
| 35 | 34 | notbid | |- ( ( x e. Q. /\ y e. Q. ) -> ( -. ( x = y \/ y-. ( ( ( 1st ` x ) .N ( 2nd ` y ) ) = ( ( 1st ` y ) .N ( 2nd ` x ) ) \/ ( ( 1st ` y ) .N ( 2nd ` x ) ) |
| 36 | 20 21 35 | 3bitr4d | |- ( ( x e. Q. /\ y e. Q. ) -> ( x-. ( x = y \/ y |
| 37 | 21 | 3adant3 | |- ( ( x e. Q. /\ y e. Q. /\ z e. Q. ) -> ( x( ( 1st ` x ) .N ( 2nd ` y ) ) |
| 38 | elpqn | |- ( z e. Q. -> z e. ( N. X. N. ) ) |
|
| 39 | 38 | 3ad2ant3 | |- ( ( x e. Q. /\ y e. Q. /\ z e. Q. ) -> z e. ( N. X. N. ) ) |
| 40 | xp2nd | |- ( z e. ( N. X. N. ) -> ( 2nd ` z ) e. N. ) |
|
| 41 | ltmpi | |- ( ( 2nd ` z ) e. N. -> ( ( ( 1st ` x ) .N ( 2nd ` y ) ) |
|
| 42 | 39 40 41 | 3syl | |- ( ( x e. Q. /\ y e. Q. /\ z e. Q. ) -> ( ( ( 1st ` x ) .N ( 2nd ` y ) ) |
| 43 | 37 42 | bitrd | |- ( ( x e. Q. /\ y e. Q. /\ z e. Q. ) -> ( x( ( 2nd ` z ) .N ( ( 1st ` x ) .N ( 2nd ` y ) ) ) |
| 44 | ordpinq | |- ( ( y e. Q. /\ z e. Q. ) -> ( y( ( 1st ` y ) .N ( 2nd ` z ) ) |
|
| 45 | 44 | 3adant1 | |- ( ( x e. Q. /\ y e. Q. /\ z e. Q. ) -> ( y( ( 1st ` y ) .N ( 2nd ` z ) ) |
| 46 | 1 | 3ad2ant1 | |- ( ( x e. Q. /\ y e. Q. /\ z e. Q. ) -> x e. ( N. X. N. ) ) |
| 47 | ltmpi | |- ( ( 2nd ` x ) e. N. -> ( ( ( 1st ` y ) .N ( 2nd ` z ) ) |
|
| 48 | 46 13 47 | 3syl | |- ( ( x e. Q. /\ y e. Q. /\ z e. Q. ) -> ( ( ( 1st ` y ) .N ( 2nd ` z ) ) |
| 49 | 45 48 | bitrd | |- ( ( x e. Q. /\ y e. Q. /\ z e. Q. ) -> ( y( ( 2nd ` x ) .N ( ( 1st ` y ) .N ( 2nd ` z ) ) ) |
| 50 | 43 49 | anbi12d | |- ( ( x e. Q. /\ y e. Q. /\ z e. Q. ) -> ( ( x( ( ( 2nd ` z ) .N ( ( 1st ` x ) .N ( 2nd ` y ) ) ) |
| 51 | fvex | |- ( 2nd ` x ) e. _V |
|
| 52 | fvex | |- ( 1st ` y ) e. _V |
|
| 53 | fvex | |- ( 2nd ` z ) e. _V |
|
| 54 | mulcompi | |- ( r .N s ) = ( s .N r ) |
|
| 55 | mulasspi | |- ( ( r .N s ) .N t ) = ( r .N ( s .N t ) ) |
|
| 56 | 51 52 53 54 55 | caov13 | |- ( ( 2nd ` x ) .N ( ( 1st ` y ) .N ( 2nd ` z ) ) ) = ( ( 2nd ` z ) .N ( ( 1st ` y ) .N ( 2nd ` x ) ) ) |
| 57 | fvex | |- ( 1st ` z ) e. _V |
|
| 58 | fvex | |- ( 2nd ` y ) e. _V |
|
| 59 | 51 57 58 54 55 | caov13 | |- ( ( 2nd ` x ) .N ( ( 1st ` z ) .N ( 2nd ` y ) ) ) = ( ( 2nd ` y ) .N ( ( 1st ` z ) .N ( 2nd ` x ) ) ) |
| 60 | 56 59 | breq12i | |- ( ( ( 2nd ` x ) .N ( ( 1st ` y ) .N ( 2nd ` z ) ) ) |
| 61 | fvex | |- ( 1st ` x ) e. _V |
|
| 62 | 53 61 58 54 55 | caov13 | |- ( ( 2nd ` z ) .N ( ( 1st ` x ) .N ( 2nd ` y ) ) ) = ( ( 2nd ` y ) .N ( ( 1st ` x ) .N ( 2nd ` z ) ) ) |
| 63 | ltrelpi | |- |
|
| 64 | 17 63 | sotri | |- ( ( ( ( 2nd ` z ) .N ( ( 1st ` x ) .N ( 2nd ` y ) ) ) |
| 65 | 62 64 | eqbrtrrid | |- ( ( ( ( 2nd ` z ) .N ( ( 1st ` x ) .N ( 2nd ` y ) ) ) |
| 66 | 60 65 | sylan2b | |- ( ( ( ( 2nd ` z ) .N ( ( 1st ` x ) .N ( 2nd ` y ) ) ) |
| 67 | 50 66 | biimtrdi | |- ( ( x e. Q. /\ y e. Q. /\ z e. Q. ) -> ( ( x( ( 2nd ` y ) .N ( ( 1st ` x ) .N ( 2nd ` z ) ) ) |
| 68 | ordpinq | |- ( ( x e. Q. /\ z e. Q. ) -> ( x( ( 1st ` x ) .N ( 2nd ` z ) ) |
|
| 69 | 68 | 3adant2 | |- ( ( x e. Q. /\ y e. Q. /\ z e. Q. ) -> ( x( ( 1st ` x ) .N ( 2nd ` z ) ) |
| 70 | 5 | 3ad2ant2 | |- ( ( x e. Q. /\ y e. Q. /\ z e. Q. ) -> y e. ( N. X. N. ) ) |
| 71 | ltmpi | |- ( ( 2nd ` y ) e. N. -> ( ( ( 1st ` x ) .N ( 2nd ` z ) ) |
|
| 72 | 70 7 71 | 3syl | |- ( ( x e. Q. /\ y e. Q. /\ z e. Q. ) -> ( ( ( 1st ` x ) .N ( 2nd ` z ) ) |
| 73 | 69 72 | bitrd | |- ( ( x e. Q. /\ y e. Q. /\ z e. Q. ) -> ( x( ( 2nd ` y ) .N ( ( 1st ` x ) .N ( 2nd ` z ) ) ) |
| 74 | 67 73 | sylibrd | |- ( ( x e. Q. /\ y e. Q. /\ z e. Q. ) -> ( ( xx |
| 75 | 36 74 | isso2i | |- |