This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Basic property of equivalence relations. Theorem 73 of Suppes p. 82. (Contributed by NM, 23-Jul-1995) (Revised by Mario Carneiro, 6-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | erth.1 | |- ( ph -> R Er X ) |
|
| erth.2 | |- ( ph -> A e. X ) |
||
| Assertion | erth | |- ( ph -> ( A R B <-> [ A ] R = [ B ] R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erth.1 | |- ( ph -> R Er X ) |
|
| 2 | erth.2 | |- ( ph -> A e. X ) |
|
| 3 | 1 | ersymb | |- ( ph -> ( A R B <-> B R A ) ) |
| 4 | 3 | biimpa | |- ( ( ph /\ A R B ) -> B R A ) |
| 5 | 1 | ertr | |- ( ph -> ( ( B R A /\ A R x ) -> B R x ) ) |
| 6 | 5 | impl | |- ( ( ( ph /\ B R A ) /\ A R x ) -> B R x ) |
| 7 | 4 6 | syldanl | |- ( ( ( ph /\ A R B ) /\ A R x ) -> B R x ) |
| 8 | 1 | ertr | |- ( ph -> ( ( A R B /\ B R x ) -> A R x ) ) |
| 9 | 8 | impl | |- ( ( ( ph /\ A R B ) /\ B R x ) -> A R x ) |
| 10 | 7 9 | impbida | |- ( ( ph /\ A R B ) -> ( A R x <-> B R x ) ) |
| 11 | vex | |- x e. _V |
|
| 12 | 2 | adantr | |- ( ( ph /\ A R B ) -> A e. X ) |
| 13 | elecg | |- ( ( x e. _V /\ A e. X ) -> ( x e. [ A ] R <-> A R x ) ) |
|
| 14 | 11 12 13 | sylancr | |- ( ( ph /\ A R B ) -> ( x e. [ A ] R <-> A R x ) ) |
| 15 | errel | |- ( R Er X -> Rel R ) |
|
| 16 | 1 15 | syl | |- ( ph -> Rel R ) |
| 17 | brrelex2 | |- ( ( Rel R /\ A R B ) -> B e. _V ) |
|
| 18 | 16 17 | sylan | |- ( ( ph /\ A R B ) -> B e. _V ) |
| 19 | elecg | |- ( ( x e. _V /\ B e. _V ) -> ( x e. [ B ] R <-> B R x ) ) |
|
| 20 | 11 18 19 | sylancr | |- ( ( ph /\ A R B ) -> ( x e. [ B ] R <-> B R x ) ) |
| 21 | 10 14 20 | 3bitr4d | |- ( ( ph /\ A R B ) -> ( x e. [ A ] R <-> x e. [ B ] R ) ) |
| 22 | 21 | eqrdv | |- ( ( ph /\ A R B ) -> [ A ] R = [ B ] R ) |
| 23 | 1 | adantr | |- ( ( ph /\ [ A ] R = [ B ] R ) -> R Er X ) |
| 24 | 1 2 | erref | |- ( ph -> A R A ) |
| 25 | 24 | adantr | |- ( ( ph /\ [ A ] R = [ B ] R ) -> A R A ) |
| 26 | 2 | adantr | |- ( ( ph /\ [ A ] R = [ B ] R ) -> A e. X ) |
| 27 | elecg | |- ( ( A e. X /\ A e. X ) -> ( A e. [ A ] R <-> A R A ) ) |
|
| 28 | 26 26 27 | syl2anc | |- ( ( ph /\ [ A ] R = [ B ] R ) -> ( A e. [ A ] R <-> A R A ) ) |
| 29 | 25 28 | mpbird | |- ( ( ph /\ [ A ] R = [ B ] R ) -> A e. [ A ] R ) |
| 30 | simpr | |- ( ( ph /\ [ A ] R = [ B ] R ) -> [ A ] R = [ B ] R ) |
|
| 31 | 29 30 | eleqtrd | |- ( ( ph /\ [ A ] R = [ B ] R ) -> A e. [ B ] R ) |
| 32 | 23 30 | ereldm | |- ( ( ph /\ [ A ] R = [ B ] R ) -> ( A e. X <-> B e. X ) ) |
| 33 | 26 32 | mpbid | |- ( ( ph /\ [ A ] R = [ B ] R ) -> B e. X ) |
| 34 | elecg | |- ( ( A e. X /\ B e. X ) -> ( A e. [ B ] R <-> B R A ) ) |
|
| 35 | 26 33 34 | syl2anc | |- ( ( ph /\ [ A ] R = [ B ] R ) -> ( A e. [ B ] R <-> B R A ) ) |
| 36 | 31 35 | mpbid | |- ( ( ph /\ [ A ] R = [ B ] R ) -> B R A ) |
| 37 | 23 36 | ersym | |- ( ( ph /\ [ A ] R = [ B ] R ) -> A R B ) |
| 38 | 22 37 | impbida | |- ( ph -> ( A R B <-> [ A ] R = [ B ] R ) ) |