This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusval.u | |- ( ph -> U = ( R /s .~ ) ) |
|
| qusval.v | |- ( ph -> V = ( Base ` R ) ) |
||
| qusval.f | |- F = ( x e. V |-> [ x ] .~ ) |
||
| qusval.e | |- ( ph -> .~ e. W ) |
||
| qusval.r | |- ( ph -> R e. Z ) |
||
| Assertion | qusval | |- ( ph -> U = ( F "s R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusval.u | |- ( ph -> U = ( R /s .~ ) ) |
|
| 2 | qusval.v | |- ( ph -> V = ( Base ` R ) ) |
|
| 3 | qusval.f | |- F = ( x e. V |-> [ x ] .~ ) |
|
| 4 | qusval.e | |- ( ph -> .~ e. W ) |
|
| 5 | qusval.r | |- ( ph -> R e. Z ) |
|
| 6 | df-qus | |- /s = ( r e. _V , e e. _V |-> ( ( x e. ( Base ` r ) |-> [ x ] e ) "s r ) ) |
|
| 7 | 6 | a1i | |- ( ph -> /s = ( r e. _V , e e. _V |-> ( ( x e. ( Base ` r ) |-> [ x ] e ) "s r ) ) ) |
| 8 | simprl | |- ( ( ph /\ ( r = R /\ e = .~ ) ) -> r = R ) |
|
| 9 | 8 | fveq2d | |- ( ( ph /\ ( r = R /\ e = .~ ) ) -> ( Base ` r ) = ( Base ` R ) ) |
| 10 | 2 | adantr | |- ( ( ph /\ ( r = R /\ e = .~ ) ) -> V = ( Base ` R ) ) |
| 11 | 9 10 | eqtr4d | |- ( ( ph /\ ( r = R /\ e = .~ ) ) -> ( Base ` r ) = V ) |
| 12 | eceq2 | |- ( e = .~ -> [ x ] e = [ x ] .~ ) |
|
| 13 | 12 | ad2antll | |- ( ( ph /\ ( r = R /\ e = .~ ) ) -> [ x ] e = [ x ] .~ ) |
| 14 | 11 13 | mpteq12dv | |- ( ( ph /\ ( r = R /\ e = .~ ) ) -> ( x e. ( Base ` r ) |-> [ x ] e ) = ( x e. V |-> [ x ] .~ ) ) |
| 15 | 14 3 | eqtr4di | |- ( ( ph /\ ( r = R /\ e = .~ ) ) -> ( x e. ( Base ` r ) |-> [ x ] e ) = F ) |
| 16 | 15 8 | oveq12d | |- ( ( ph /\ ( r = R /\ e = .~ ) ) -> ( ( x e. ( Base ` r ) |-> [ x ] e ) "s r ) = ( F "s R ) ) |
| 17 | 5 | elexd | |- ( ph -> R e. _V ) |
| 18 | 4 | elexd | |- ( ph -> .~ e. _V ) |
| 19 | ovexd | |- ( ph -> ( F "s R ) e. _V ) |
|
| 20 | 7 16 17 18 19 | ovmpod | |- ( ph -> ( R /s .~ ) = ( F "s R ) ) |
| 21 | 1 20 | eqtrd | |- ( ph -> U = ( F "s R ) ) |