This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function in qusval is a surjection onto a quotient set. (Contributed by Mario Carneiro, 23-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusval.u | |- ( ph -> U = ( R /s .~ ) ) |
|
| qusval.v | |- ( ph -> V = ( Base ` R ) ) |
||
| qusval.f | |- F = ( x e. V |-> [ x ] .~ ) |
||
| qusval.e | |- ( ph -> .~ e. W ) |
||
| qusval.r | |- ( ph -> R e. Z ) |
||
| Assertion | quslem | |- ( ph -> F : V -onto-> ( V /. .~ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusval.u | |- ( ph -> U = ( R /s .~ ) ) |
|
| 2 | qusval.v | |- ( ph -> V = ( Base ` R ) ) |
|
| 3 | qusval.f | |- F = ( x e. V |-> [ x ] .~ ) |
|
| 4 | qusval.e | |- ( ph -> .~ e. W ) |
|
| 5 | qusval.r | |- ( ph -> R e. Z ) |
|
| 6 | ecexg | |- ( .~ e. W -> [ x ] .~ e. _V ) |
|
| 7 | 4 6 | syl | |- ( ph -> [ x ] .~ e. _V ) |
| 8 | 7 | ralrimivw | |- ( ph -> A. x e. V [ x ] .~ e. _V ) |
| 9 | 3 | fnmpt | |- ( A. x e. V [ x ] .~ e. _V -> F Fn V ) |
| 10 | 8 9 | syl | |- ( ph -> F Fn V ) |
| 11 | dffn4 | |- ( F Fn V <-> F : V -onto-> ran F ) |
|
| 12 | 10 11 | sylib | |- ( ph -> F : V -onto-> ran F ) |
| 13 | 3 | rnmpt | |- ran F = { y | E. x e. V y = [ x ] .~ } |
| 14 | df-qs | |- ( V /. .~ ) = { y | E. x e. V y = [ x ] .~ } |
|
| 15 | 13 14 | eqtr4i | |- ran F = ( V /. .~ ) |
| 16 | foeq3 | |- ( ran F = ( V /. .~ ) -> ( F : V -onto-> ran F <-> F : V -onto-> ( V /. .~ ) ) ) |
|
| 17 | 15 16 | ax-mp | |- ( F : V -onto-> ran F <-> F : V -onto-> ( V /. .~ ) ) |
| 18 | 12 17 | sylib | |- ( ph -> F : V -onto-> ( V /. .~ ) ) |