This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topology of an image structure. (Contributed by Mario Carneiro, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imastps.u | |- ( ph -> U = ( F "s R ) ) |
|
| imastps.v | |- ( ph -> V = ( Base ` R ) ) |
||
| imastps.f | |- ( ph -> F : V -onto-> B ) |
||
| imastopn.r | |- ( ph -> R e. W ) |
||
| imastopn.j | |- J = ( TopOpen ` R ) |
||
| imastopn.o | |- O = ( TopOpen ` U ) |
||
| Assertion | imastopn | |- ( ph -> O = ( J qTop F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imastps.u | |- ( ph -> U = ( F "s R ) ) |
|
| 2 | imastps.v | |- ( ph -> V = ( Base ` R ) ) |
|
| 3 | imastps.f | |- ( ph -> F : V -onto-> B ) |
|
| 4 | imastopn.r | |- ( ph -> R e. W ) |
|
| 5 | imastopn.j | |- J = ( TopOpen ` R ) |
|
| 6 | imastopn.o | |- O = ( TopOpen ` U ) |
|
| 7 | eqid | |- ( TopSet ` U ) = ( TopSet ` U ) |
|
| 8 | 1 2 3 4 5 7 | imastset | |- ( ph -> ( TopSet ` U ) = ( J qTop F ) ) |
| 9 | 5 | fvexi | |- J e. _V |
| 10 | fofn | |- ( F : V -onto-> B -> F Fn V ) |
|
| 11 | 3 10 | syl | |- ( ph -> F Fn V ) |
| 12 | fvex | |- ( Base ` R ) e. _V |
|
| 13 | 2 12 | eqeltrdi | |- ( ph -> V e. _V ) |
| 14 | fnex | |- ( ( F Fn V /\ V e. _V ) -> F e. _V ) |
|
| 15 | 11 13 14 | syl2anc | |- ( ph -> F e. _V ) |
| 16 | eqid | |- U. J = U. J |
|
| 17 | 16 | qtopval | |- ( ( J e. _V /\ F e. _V ) -> ( J qTop F ) = { x e. ~P ( F " U. J ) | ( ( `' F " x ) i^i U. J ) e. J } ) |
| 18 | 9 15 17 | sylancr | |- ( ph -> ( J qTop F ) = { x e. ~P ( F " U. J ) | ( ( `' F " x ) i^i U. J ) e. J } ) |
| 19 | 8 18 | eqtrd | |- ( ph -> ( TopSet ` U ) = { x e. ~P ( F " U. J ) | ( ( `' F " x ) i^i U. J ) e. J } ) |
| 20 | ssrab2 | |- { x e. ~P ( F " U. J ) | ( ( `' F " x ) i^i U. J ) e. J } C_ ~P ( F " U. J ) |
|
| 21 | imassrn | |- ( F " U. J ) C_ ran F |
|
| 22 | forn | |- ( F : V -onto-> B -> ran F = B ) |
|
| 23 | 3 22 | syl | |- ( ph -> ran F = B ) |
| 24 | 1 2 3 4 | imasbas | |- ( ph -> B = ( Base ` U ) ) |
| 25 | 23 24 | eqtrd | |- ( ph -> ran F = ( Base ` U ) ) |
| 26 | 21 25 | sseqtrid | |- ( ph -> ( F " U. J ) C_ ( Base ` U ) ) |
| 27 | 26 | sspwd | |- ( ph -> ~P ( F " U. J ) C_ ~P ( Base ` U ) ) |
| 28 | 20 27 | sstrid | |- ( ph -> { x e. ~P ( F " U. J ) | ( ( `' F " x ) i^i U. J ) e. J } C_ ~P ( Base ` U ) ) |
| 29 | 19 28 | eqsstrd | |- ( ph -> ( TopSet ` U ) C_ ~P ( Base ` U ) ) |
| 30 | eqid | |- ( Base ` U ) = ( Base ` U ) |
|
| 31 | 30 7 | topnid | |- ( ( TopSet ` U ) C_ ~P ( Base ` U ) -> ( TopSet ` U ) = ( TopOpen ` U ) ) |
| 32 | 29 31 | syl | |- ( ph -> ( TopSet ` U ) = ( TopOpen ` U ) ) |
| 33 | 32 6 | eqtr4di | |- ( ph -> ( TopSet ` U ) = O ) |
| 34 | 33 8 | eqtr3d | |- ( ph -> O = ( J qTop F ) ) |