This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The quotient of a topological group is a topological group. (Contributed by Mario Carneiro, 17-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | qustgp.h | |- H = ( G /s ( G ~QG Y ) ) |
|
| Assertion | qustgp | |- ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) ) -> H e. TopGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qustgp.h | |- H = ( G /s ( G ~QG Y ) ) |
|
| 2 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 3 | eqid | |- ( TopOpen ` G ) = ( TopOpen ` G ) |
|
| 4 | eqid | |- ( TopOpen ` H ) = ( TopOpen ` H ) |
|
| 5 | eqid | |- ( x e. ( Base ` G ) |-> [ x ] ( G ~QG Y ) ) = ( x e. ( Base ` G ) |-> [ x ] ( G ~QG Y ) ) |
|
| 6 | eqid | |- ( z e. ( Base ` G ) , w e. ( Base ` G ) |-> [ ( z ( -g ` G ) w ) ] ( G ~QG Y ) ) = ( z e. ( Base ` G ) , w e. ( Base ` G ) |-> [ ( z ( -g ` G ) w ) ] ( G ~QG Y ) ) |
|
| 7 | 1 2 3 4 5 6 | qustgplem | |- ( ( G e. TopGrp /\ Y e. ( NrmSGrp ` G ) ) -> H e. TopGrp ) |