This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pythagtrip . Show the relationship between M , N , and B . (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pythagtriplem15.1 | |- M = ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) |
|
| pythagtriplem15.2 | |- N = ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) |
||
| Assertion | pythagtriplem16 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> B = ( 2 x. ( M x. N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pythagtriplem15.1 | |- M = ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) |
|
| 2 | pythagtriplem15.2 | |- N = ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) |
|
| 3 | 1 2 | oveq12i | |- ( M x. N ) = ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) x. ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ) |
| 4 | nncn | |- ( C e. NN -> C e. CC ) |
|
| 5 | nncn | |- ( B e. NN -> B e. CC ) |
|
| 6 | addcl | |- ( ( C e. CC /\ B e. CC ) -> ( C + B ) e. CC ) |
|
| 7 | 4 5 6 | syl2anr | |- ( ( B e. NN /\ C e. NN ) -> ( C + B ) e. CC ) |
| 8 | 7 | sqrtcld | |- ( ( B e. NN /\ C e. NN ) -> ( sqrt ` ( C + B ) ) e. CC ) |
| 9 | subcl | |- ( ( C e. CC /\ B e. CC ) -> ( C - B ) e. CC ) |
|
| 10 | 4 5 9 | syl2anr | |- ( ( B e. NN /\ C e. NN ) -> ( C - B ) e. CC ) |
| 11 | 10 | sqrtcld | |- ( ( B e. NN /\ C e. NN ) -> ( sqrt ` ( C - B ) ) e. CC ) |
| 12 | addcl | |- ( ( ( sqrt ` ( C + B ) ) e. CC /\ ( sqrt ` ( C - B ) ) e. CC ) -> ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) e. CC ) |
|
| 13 | 8 11 12 | syl2anc | |- ( ( B e. NN /\ C e. NN ) -> ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) e. CC ) |
| 14 | 13 | 3adant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) e. CC ) |
| 15 | 14 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) e. CC ) |
| 16 | subcl | |- ( ( ( sqrt ` ( C + B ) ) e. CC /\ ( sqrt ` ( C - B ) ) e. CC ) -> ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) e. CC ) |
|
| 17 | 8 11 16 | syl2anc | |- ( ( B e. NN /\ C e. NN ) -> ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) e. CC ) |
| 18 | 17 | 3adant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) e. CC ) |
| 19 | 18 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) e. CC ) |
| 20 | 2cnne0 | |- ( 2 e. CC /\ 2 =/= 0 ) |
|
| 21 | divmuldiv | |- ( ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) e. CC /\ ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) e. CC ) /\ ( ( 2 e. CC /\ 2 =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) ) -> ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) x. ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ) = ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) / ( 2 x. 2 ) ) ) |
|
| 22 | 20 20 21 | mpanr12 | |- ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) e. CC /\ ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) e. CC ) -> ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) x. ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ) = ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) / ( 2 x. 2 ) ) ) |
| 23 | 15 19 22 | syl2anc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) x. ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ) = ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) / ( 2 x. 2 ) ) ) |
| 24 | 13 17 | mulcld | |- ( ( B e. NN /\ C e. NN ) -> ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) e. CC ) |
| 25 | 24 | 3adant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) e. CC ) |
| 26 | 25 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) e. CC ) |
| 27 | divdiv1 | |- ( ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) / 2 ) / 2 ) = ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) / ( 2 x. 2 ) ) ) |
|
| 28 | 20 20 27 | mp3an23 | |- ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) e. CC -> ( ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) / 2 ) / 2 ) = ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) / ( 2 x. 2 ) ) ) |
| 29 | 26 28 | syl | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) / 2 ) / 2 ) = ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) / ( 2 x. 2 ) ) ) |
| 30 | 23 29 | eqtr4d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) x. ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ) = ( ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) / 2 ) / 2 ) ) |
| 31 | nnre | |- ( C e. NN -> C e. RR ) |
|
| 32 | nnre | |- ( B e. NN -> B e. RR ) |
|
| 33 | readdcl | |- ( ( C e. RR /\ B e. RR ) -> ( C + B ) e. RR ) |
|
| 34 | 31 32 33 | syl2anr | |- ( ( B e. NN /\ C e. NN ) -> ( C + B ) e. RR ) |
| 35 | 34 | 3adant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C + B ) e. RR ) |
| 36 | 35 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C + B ) e. RR ) |
| 37 | 31 | adantl | |- ( ( B e. NN /\ C e. NN ) -> C e. RR ) |
| 38 | 32 | adantr | |- ( ( B e. NN /\ C e. NN ) -> B e. RR ) |
| 39 | nngt0 | |- ( C e. NN -> 0 < C ) |
|
| 40 | 39 | adantl | |- ( ( B e. NN /\ C e. NN ) -> 0 < C ) |
| 41 | nngt0 | |- ( B e. NN -> 0 < B ) |
|
| 42 | 41 | adantr | |- ( ( B e. NN /\ C e. NN ) -> 0 < B ) |
| 43 | 37 38 40 42 | addgt0d | |- ( ( B e. NN /\ C e. NN ) -> 0 < ( C + B ) ) |
| 44 | 0re | |- 0 e. RR |
|
| 45 | ltle | |- ( ( 0 e. RR /\ ( C + B ) e. RR ) -> ( 0 < ( C + B ) -> 0 <_ ( C + B ) ) ) |
|
| 46 | 44 45 | mpan | |- ( ( C + B ) e. RR -> ( 0 < ( C + B ) -> 0 <_ ( C + B ) ) ) |
| 47 | 34 43 46 | sylc | |- ( ( B e. NN /\ C e. NN ) -> 0 <_ ( C + B ) ) |
| 48 | 47 | 3adant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> 0 <_ ( C + B ) ) |
| 49 | 48 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 <_ ( C + B ) ) |
| 50 | resqrtth | |- ( ( ( C + B ) e. RR /\ 0 <_ ( C + B ) ) -> ( ( sqrt ` ( C + B ) ) ^ 2 ) = ( C + B ) ) |
|
| 51 | 36 49 50 | syl2anc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( sqrt ` ( C + B ) ) ^ 2 ) = ( C + B ) ) |
| 52 | resubcl | |- ( ( C e. RR /\ B e. RR ) -> ( C - B ) e. RR ) |
|
| 53 | 31 32 52 | syl2anr | |- ( ( B e. NN /\ C e. NN ) -> ( C - B ) e. RR ) |
| 54 | 53 | 3adant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C - B ) e. RR ) |
| 55 | 54 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C - B ) e. RR ) |
| 56 | pythagtriplem10 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> 0 < ( C - B ) ) |
|
| 57 | 56 | 3adant3 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 < ( C - B ) ) |
| 58 | ltle | |- ( ( 0 e. RR /\ ( C - B ) e. RR ) -> ( 0 < ( C - B ) -> 0 <_ ( C - B ) ) ) |
|
| 59 | 44 58 | mpan | |- ( ( C - B ) e. RR -> ( 0 < ( C - B ) -> 0 <_ ( C - B ) ) ) |
| 60 | 55 57 59 | sylc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 <_ ( C - B ) ) |
| 61 | resqrtth | |- ( ( ( C - B ) e. RR /\ 0 <_ ( C - B ) ) -> ( ( sqrt ` ( C - B ) ) ^ 2 ) = ( C - B ) ) |
|
| 62 | 55 60 61 | syl2anc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( sqrt ` ( C - B ) ) ^ 2 ) = ( C - B ) ) |
| 63 | 51 62 | oveq12d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( sqrt ` ( C + B ) ) ^ 2 ) - ( ( sqrt ` ( C - B ) ) ^ 2 ) ) = ( ( C + B ) - ( C - B ) ) ) |
| 64 | 63 | oveq1d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) ^ 2 ) - ( ( sqrt ` ( C - B ) ) ^ 2 ) ) / 2 ) = ( ( ( C + B ) - ( C - B ) ) / 2 ) ) |
| 65 | simp12 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> B e. NN ) |
|
| 66 | simp13 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> C e. NN ) |
|
| 67 | 65 66 8 | syl2anc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C + B ) ) e. CC ) |
| 68 | 65 66 11 | syl2anc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C - B ) ) e. CC ) |
| 69 | subsq | |- ( ( ( sqrt ` ( C + B ) ) e. CC /\ ( sqrt ` ( C - B ) ) e. CC ) -> ( ( ( sqrt ` ( C + B ) ) ^ 2 ) - ( ( sqrt ` ( C - B ) ) ^ 2 ) ) = ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) ) |
|
| 70 | 67 68 69 | syl2anc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( sqrt ` ( C + B ) ) ^ 2 ) - ( ( sqrt ` ( C - B ) ) ^ 2 ) ) = ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) ) |
| 71 | 70 | oveq1d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) ^ 2 ) - ( ( sqrt ` ( C - B ) ) ^ 2 ) ) / 2 ) = ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) / 2 ) ) |
| 72 | pnncan | |- ( ( C e. CC /\ B e. CC /\ B e. CC ) -> ( ( C + B ) - ( C - B ) ) = ( B + B ) ) |
|
| 73 | 72 | 3anidm23 | |- ( ( C e. CC /\ B e. CC ) -> ( ( C + B ) - ( C - B ) ) = ( B + B ) ) |
| 74 | 2times | |- ( B e. CC -> ( 2 x. B ) = ( B + B ) ) |
|
| 75 | 74 | adantl | |- ( ( C e. CC /\ B e. CC ) -> ( 2 x. B ) = ( B + B ) ) |
| 76 | 73 75 | eqtr4d | |- ( ( C e. CC /\ B e. CC ) -> ( ( C + B ) - ( C - B ) ) = ( 2 x. B ) ) |
| 77 | 4 5 76 | syl2anr | |- ( ( B e. NN /\ C e. NN ) -> ( ( C + B ) - ( C - B ) ) = ( 2 x. B ) ) |
| 78 | 77 | 3adant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( C + B ) - ( C - B ) ) = ( 2 x. B ) ) |
| 79 | 78 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C + B ) - ( C - B ) ) = ( 2 x. B ) ) |
| 80 | 79 | oveq1d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C + B ) - ( C - B ) ) / 2 ) = ( ( 2 x. B ) / 2 ) ) |
| 81 | 2cn | |- 2 e. CC |
|
| 82 | 2ne0 | |- 2 =/= 0 |
|
| 83 | divcan3 | |- ( ( B e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( 2 x. B ) / 2 ) = B ) |
|
| 84 | 81 82 83 | mp3an23 | |- ( B e. CC -> ( ( 2 x. B ) / 2 ) = B ) |
| 85 | 65 5 84 | 3syl | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( 2 x. B ) / 2 ) = B ) |
| 86 | 80 85 | eqtrd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C + B ) - ( C - B ) ) / 2 ) = B ) |
| 87 | 64 71 86 | 3eqtr3d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) / 2 ) = B ) |
| 88 | 87 | oveq1d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) x. ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) / 2 ) / 2 ) = ( B / 2 ) ) |
| 89 | 30 88 | eqtrd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) x. ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ) = ( B / 2 ) ) |
| 90 | 3 89 | eqtrid | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( M x. N ) = ( B / 2 ) ) |
| 91 | 90 | oveq2d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. ( M x. N ) ) = ( 2 x. ( B / 2 ) ) ) |
| 92 | divcan2 | |- ( ( B e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( 2 x. ( B / 2 ) ) = B ) |
|
| 93 | 81 82 92 | mp3an23 | |- ( B e. CC -> ( 2 x. ( B / 2 ) ) = B ) |
| 94 | 5 93 | syl | |- ( B e. NN -> ( 2 x. ( B / 2 ) ) = B ) |
| 95 | 94 | 3ad2ant2 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( 2 x. ( B / 2 ) ) = B ) |
| 96 | 95 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. ( B / 2 ) ) = B ) |
| 97 | 91 96 | eqtr2d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> B = ( 2 x. ( M x. N ) ) ) |