This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cancellation law for division. (Contributed by NM, 3-Feb-2004) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divcan2 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( B x. ( A / B ) ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( A / B ) = ( A / B ) |
|
| 2 | simp1 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> A e. CC ) |
|
| 3 | divcl | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) e. CC ) |
|
| 4 | 3simpc | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( B e. CC /\ B =/= 0 ) ) |
|
| 5 | divmul | |- ( ( A e. CC /\ ( A / B ) e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A / B ) = ( A / B ) <-> ( B x. ( A / B ) ) = A ) ) |
|
| 6 | 2 3 4 5 | syl3anc | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A / B ) = ( A / B ) <-> ( B x. ( A / B ) ) = A ) ) |
| 7 | 1 6 | mpbii | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( B x. ( A / B ) ) = A ) |