This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pythagtrip . Show the relationship between M , N , and C . (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pythagtriplem15.1 | |- M = ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) |
|
| pythagtriplem15.2 | |- N = ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) |
||
| Assertion | pythagtriplem17 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> C = ( ( M ^ 2 ) + ( N ^ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pythagtriplem15.1 | |- M = ( ( ( sqrt ` ( C + B ) ) + ( sqrt ` ( C - B ) ) ) / 2 ) |
|
| 2 | pythagtriplem15.2 | |- N = ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) |
|
| 3 | 1 | pythagtriplem12 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( M ^ 2 ) = ( ( C + A ) / 2 ) ) |
| 4 | 2 | pythagtriplem14 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( N ^ 2 ) = ( ( C - A ) / 2 ) ) |
| 5 | 3 4 | oveq12d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( M ^ 2 ) + ( N ^ 2 ) ) = ( ( ( C + A ) / 2 ) + ( ( C - A ) / 2 ) ) ) |
| 6 | nncn | |- ( C e. NN -> C e. CC ) |
|
| 7 | 6 | 3ad2ant3 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> C e. CC ) |
| 8 | 7 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> C e. CC ) |
| 9 | nncn | |- ( A e. NN -> A e. CC ) |
|
| 10 | 9 | 3ad2ant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. CC ) |
| 11 | 10 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A e. CC ) |
| 12 | 8 11 | addcld | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C + A ) e. CC ) |
| 13 | 8 11 | subcld | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C - A ) e. CC ) |
| 14 | 2cnne0 | |- ( 2 e. CC /\ 2 =/= 0 ) |
|
| 15 | divdir | |- ( ( ( C + A ) e. CC /\ ( C - A ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( C + A ) + ( C - A ) ) / 2 ) = ( ( ( C + A ) / 2 ) + ( ( C - A ) / 2 ) ) ) |
|
| 16 | 14 15 | mp3an3 | |- ( ( ( C + A ) e. CC /\ ( C - A ) e. CC ) -> ( ( ( C + A ) + ( C - A ) ) / 2 ) = ( ( ( C + A ) / 2 ) + ( ( C - A ) / 2 ) ) ) |
| 17 | 12 13 16 | syl2anc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C + A ) + ( C - A ) ) / 2 ) = ( ( ( C + A ) / 2 ) + ( ( C - A ) / 2 ) ) ) |
| 18 | 5 17 | eqtr4d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( M ^ 2 ) + ( N ^ 2 ) ) = ( ( ( C + A ) + ( C - A ) ) / 2 ) ) |
| 19 | 8 11 8 | ppncand | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C + A ) + ( C - A ) ) = ( C + C ) ) |
| 20 | 8 | 2timesd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 x. C ) = ( C + C ) ) |
| 21 | 19 20 | eqtr4d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C + A ) + ( C - A ) ) = ( 2 x. C ) ) |
| 22 | 21 | oveq1d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C + A ) + ( C - A ) ) / 2 ) = ( ( 2 x. C ) / 2 ) ) |
| 23 | 2cn | |- 2 e. CC |
|
| 24 | 2ne0 | |- 2 =/= 0 |
|
| 25 | divcan3 | |- ( ( C e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( 2 x. C ) / 2 ) = C ) |
|
| 26 | 23 24 25 | mp3an23 | |- ( C e. CC -> ( ( 2 x. C ) / 2 ) = C ) |
| 27 | 8 26 | syl | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( 2 x. C ) / 2 ) = C ) |
| 28 | 18 22 27 | 3eqtrrd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> C = ( ( M ^ 2 ) + ( N ^ 2 ) ) ) |