This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of two ratios. Theorem I.14 of Apostol p. 18. (Contributed by NM, 1-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divmuldiv | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / C ) x. ( B / D ) ) = ( ( A x. B ) / ( C x. D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anass | |- ( ( A e. CC /\ C e. CC /\ C =/= 0 ) <-> ( A e. CC /\ ( C e. CC /\ C =/= 0 ) ) ) |
|
| 2 | 3anass | |- ( ( B e. CC /\ D e. CC /\ D =/= 0 ) <-> ( B e. CC /\ ( D e. CC /\ D =/= 0 ) ) ) |
|
| 3 | divcl | |- ( ( A e. CC /\ C e. CC /\ C =/= 0 ) -> ( A / C ) e. CC ) |
|
| 4 | divcl | |- ( ( B e. CC /\ D e. CC /\ D =/= 0 ) -> ( B / D ) e. CC ) |
|
| 5 | mulcl | |- ( ( ( A / C ) e. CC /\ ( B / D ) e. CC ) -> ( ( A / C ) x. ( B / D ) ) e. CC ) |
|
| 6 | 3 4 5 | syl2an | |- ( ( ( A e. CC /\ C e. CC /\ C =/= 0 ) /\ ( B e. CC /\ D e. CC /\ D =/= 0 ) ) -> ( ( A / C ) x. ( B / D ) ) e. CC ) |
| 7 | mulcl | |- ( ( C e. CC /\ D e. CC ) -> ( C x. D ) e. CC ) |
|
| 8 | 7 | ad2ant2r | |- ( ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( C x. D ) e. CC ) |
| 9 | 8 | 3adantr1 | |- ( ( ( C e. CC /\ C =/= 0 ) /\ ( B e. CC /\ D e. CC /\ D =/= 0 ) ) -> ( C x. D ) e. CC ) |
| 10 | 9 | 3adantl1 | |- ( ( ( A e. CC /\ C e. CC /\ C =/= 0 ) /\ ( B e. CC /\ D e. CC /\ D =/= 0 ) ) -> ( C x. D ) e. CC ) |
| 11 | mulne0 | |- ( ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( C x. D ) =/= 0 ) |
|
| 12 | 11 | 3adantr1 | |- ( ( ( C e. CC /\ C =/= 0 ) /\ ( B e. CC /\ D e. CC /\ D =/= 0 ) ) -> ( C x. D ) =/= 0 ) |
| 13 | 12 | 3adantl1 | |- ( ( ( A e. CC /\ C e. CC /\ C =/= 0 ) /\ ( B e. CC /\ D e. CC /\ D =/= 0 ) ) -> ( C x. D ) =/= 0 ) |
| 14 | divcan3 | |- ( ( ( ( A / C ) x. ( B / D ) ) e. CC /\ ( C x. D ) e. CC /\ ( C x. D ) =/= 0 ) -> ( ( ( C x. D ) x. ( ( A / C ) x. ( B / D ) ) ) / ( C x. D ) ) = ( ( A / C ) x. ( B / D ) ) ) |
|
| 15 | 6 10 13 14 | syl3anc | |- ( ( ( A e. CC /\ C e. CC /\ C =/= 0 ) /\ ( B e. CC /\ D e. CC /\ D =/= 0 ) ) -> ( ( ( C x. D ) x. ( ( A / C ) x. ( B / D ) ) ) / ( C x. D ) ) = ( ( A / C ) x. ( B / D ) ) ) |
| 16 | simp2 | |- ( ( A e. CC /\ C e. CC /\ C =/= 0 ) -> C e. CC ) |
|
| 17 | 16 3 | jca | |- ( ( A e. CC /\ C e. CC /\ C =/= 0 ) -> ( C e. CC /\ ( A / C ) e. CC ) ) |
| 18 | simp2 | |- ( ( B e. CC /\ D e. CC /\ D =/= 0 ) -> D e. CC ) |
|
| 19 | 18 4 | jca | |- ( ( B e. CC /\ D e. CC /\ D =/= 0 ) -> ( D e. CC /\ ( B / D ) e. CC ) ) |
| 20 | mul4 | |- ( ( ( C e. CC /\ ( A / C ) e. CC ) /\ ( D e. CC /\ ( B / D ) e. CC ) ) -> ( ( C x. ( A / C ) ) x. ( D x. ( B / D ) ) ) = ( ( C x. D ) x. ( ( A / C ) x. ( B / D ) ) ) ) |
|
| 21 | 17 19 20 | syl2an | |- ( ( ( A e. CC /\ C e. CC /\ C =/= 0 ) /\ ( B e. CC /\ D e. CC /\ D =/= 0 ) ) -> ( ( C x. ( A / C ) ) x. ( D x. ( B / D ) ) ) = ( ( C x. D ) x. ( ( A / C ) x. ( B / D ) ) ) ) |
| 22 | divcan2 | |- ( ( A e. CC /\ C e. CC /\ C =/= 0 ) -> ( C x. ( A / C ) ) = A ) |
|
| 23 | divcan2 | |- ( ( B e. CC /\ D e. CC /\ D =/= 0 ) -> ( D x. ( B / D ) ) = B ) |
|
| 24 | 22 23 | oveqan12d | |- ( ( ( A e. CC /\ C e. CC /\ C =/= 0 ) /\ ( B e. CC /\ D e. CC /\ D =/= 0 ) ) -> ( ( C x. ( A / C ) ) x. ( D x. ( B / D ) ) ) = ( A x. B ) ) |
| 25 | 21 24 | eqtr3d | |- ( ( ( A e. CC /\ C e. CC /\ C =/= 0 ) /\ ( B e. CC /\ D e. CC /\ D =/= 0 ) ) -> ( ( C x. D ) x. ( ( A / C ) x. ( B / D ) ) ) = ( A x. B ) ) |
| 26 | 25 | oveq1d | |- ( ( ( A e. CC /\ C e. CC /\ C =/= 0 ) /\ ( B e. CC /\ D e. CC /\ D =/= 0 ) ) -> ( ( ( C x. D ) x. ( ( A / C ) x. ( B / D ) ) ) / ( C x. D ) ) = ( ( A x. B ) / ( C x. D ) ) ) |
| 27 | 15 26 | eqtr3d | |- ( ( ( A e. CC /\ C e. CC /\ C =/= 0 ) /\ ( B e. CC /\ D e. CC /\ D =/= 0 ) ) -> ( ( A / C ) x. ( B / D ) ) = ( ( A x. B ) / ( C x. D ) ) ) |
| 28 | 1 2 27 | syl2anbr | |- ( ( ( A e. CC /\ ( C e. CC /\ C =/= 0 ) ) /\ ( B e. CC /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / C ) x. ( B / D ) ) = ( ( A x. B ) / ( C x. D ) ) ) |
| 29 | 28 | an4s | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) ) -> ( ( A / C ) x. ( B / D ) ) = ( ( A x. B ) / ( C x. D ) ) ) |