This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pythagtrip . Show that N (which will eventually be closely related to the n in the final statement) is a natural. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pythagtriplem13.1 | |- N = ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) |
|
| Assertion | pythagtriplem13 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> N e. NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pythagtriplem13.1 | |- N = ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) |
|
| 2 | pythagtriplem9 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C + B ) ) e. NN ) |
|
| 3 | 2 | nnzd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C + B ) ) e. ZZ ) |
| 4 | simp3r | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> -. 2 || A ) |
|
| 5 | 2z | |- 2 e. ZZ |
|
| 6 | simp3 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> C e. NN ) |
|
| 7 | simp2 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> B e. NN ) |
|
| 8 | 6 7 | nnaddcld | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C + B ) e. NN ) |
| 9 | 8 | nnzd | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C + B ) e. ZZ ) |
| 10 | 9 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C + B ) e. ZZ ) |
| 11 | nnz | |- ( A e. NN -> A e. ZZ ) |
|
| 12 | 11 | 3ad2ant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. ZZ ) |
| 13 | 12 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A e. ZZ ) |
| 14 | dvdsgcdb | |- ( ( 2 e. ZZ /\ ( C + B ) e. ZZ /\ A e. ZZ ) -> ( ( 2 || ( C + B ) /\ 2 || A ) <-> 2 || ( ( C + B ) gcd A ) ) ) |
|
| 15 | 5 10 13 14 | mp3an2i | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( 2 || ( C + B ) /\ 2 || A ) <-> 2 || ( ( C + B ) gcd A ) ) ) |
| 16 | 15 | biimpar | |- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ 2 || ( ( C + B ) gcd A ) ) -> ( 2 || ( C + B ) /\ 2 || A ) ) |
| 17 | 16 | simprd | |- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ 2 || ( ( C + B ) gcd A ) ) -> 2 || A ) |
| 18 | 4 17 | mtand | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> -. 2 || ( ( C + B ) gcd A ) ) |
| 19 | pythagtriplem7 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C + B ) ) = ( ( C + B ) gcd A ) ) |
|
| 20 | 19 | breq2d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 || ( sqrt ` ( C + B ) ) <-> 2 || ( ( C + B ) gcd A ) ) ) |
| 21 | 18 20 | mtbird | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> -. 2 || ( sqrt ` ( C + B ) ) ) |
| 22 | pythagtriplem8 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C - B ) ) e. NN ) |
|
| 23 | 22 | nnzd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C - B ) ) e. ZZ ) |
| 24 | nnz | |- ( C e. NN -> C e. ZZ ) |
|
| 25 | 24 | 3ad2ant3 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> C e. ZZ ) |
| 26 | nnz | |- ( B e. NN -> B e. ZZ ) |
|
| 27 | 26 | 3ad2ant2 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> B e. ZZ ) |
| 28 | 25 27 | zsubcld | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C - B ) e. ZZ ) |
| 29 | 28 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C - B ) e. ZZ ) |
| 30 | dvdsgcdb | |- ( ( 2 e. ZZ /\ ( C - B ) e. ZZ /\ A e. ZZ ) -> ( ( 2 || ( C - B ) /\ 2 || A ) <-> 2 || ( ( C - B ) gcd A ) ) ) |
|
| 31 | 5 29 13 30 | mp3an2i | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( 2 || ( C - B ) /\ 2 || A ) <-> 2 || ( ( C - B ) gcd A ) ) ) |
| 32 | 31 | biimpar | |- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ 2 || ( ( C - B ) gcd A ) ) -> ( 2 || ( C - B ) /\ 2 || A ) ) |
| 33 | 32 | simprd | |- ( ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) /\ 2 || ( ( C - B ) gcd A ) ) -> 2 || A ) |
| 34 | 4 33 | mtand | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> -. 2 || ( ( C - B ) gcd A ) ) |
| 35 | pythagtriplem6 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C - B ) ) = ( ( C - B ) gcd A ) ) |
|
| 36 | 35 | breq2d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 || ( sqrt ` ( C - B ) ) <-> 2 || ( ( C - B ) gcd A ) ) ) |
| 37 | 34 36 | mtbird | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> -. 2 || ( sqrt ` ( C - B ) ) ) |
| 38 | omoe | |- ( ( ( ( sqrt ` ( C + B ) ) e. ZZ /\ -. 2 || ( sqrt ` ( C + B ) ) ) /\ ( ( sqrt ` ( C - B ) ) e. ZZ /\ -. 2 || ( sqrt ` ( C - B ) ) ) ) -> 2 || ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) |
|
| 39 | 3 21 23 37 38 | syl22anc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 2 || ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) |
| 40 | 28 | zred | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C - B ) e. RR ) |
| 41 | 40 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C - B ) e. RR ) |
| 42 | simp13 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> C e. NN ) |
|
| 43 | 42 | nnred | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> C e. RR ) |
| 44 | 8 | nnred | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C + B ) e. RR ) |
| 45 | 44 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C + B ) e. RR ) |
| 46 | nnrp | |- ( B e. NN -> B e. RR+ ) |
|
| 47 | 46 | 3ad2ant2 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> B e. RR+ ) |
| 48 | 47 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> B e. RR+ ) |
| 49 | 43 48 | ltsubrpd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C - B ) < C ) |
| 50 | nngt0 | |- ( B e. NN -> 0 < B ) |
|
| 51 | 50 | 3ad2ant2 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> 0 < B ) |
| 52 | 51 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 < B ) |
| 53 | simp12 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> B e. NN ) |
|
| 54 | 53 | nnred | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> B e. RR ) |
| 55 | 54 43 | ltaddposd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 0 < B <-> C < ( C + B ) ) ) |
| 56 | 52 55 | mpbid | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> C < ( C + B ) ) |
| 57 | 41 43 45 49 56 | lttrd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C - B ) < ( C + B ) ) |
| 58 | pythagtriplem10 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> 0 < ( C - B ) ) |
|
| 59 | 58 | 3adant3 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 < ( C - B ) ) |
| 60 | 0re | |- 0 e. RR |
|
| 61 | ltle | |- ( ( 0 e. RR /\ ( C - B ) e. RR ) -> ( 0 < ( C - B ) -> 0 <_ ( C - B ) ) ) |
|
| 62 | 60 61 | mpan | |- ( ( C - B ) e. RR -> ( 0 < ( C - B ) -> 0 <_ ( C - B ) ) ) |
| 63 | 41 59 62 | sylc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 <_ ( C - B ) ) |
| 64 | nngt0 | |- ( C e. NN -> 0 < C ) |
|
| 65 | 64 | 3ad2ant3 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> 0 < C ) |
| 66 | 65 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 < C ) |
| 67 | 43 54 66 52 | addgt0d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 < ( C + B ) ) |
| 68 | ltle | |- ( ( 0 e. RR /\ ( C + B ) e. RR ) -> ( 0 < ( C + B ) -> 0 <_ ( C + B ) ) ) |
|
| 69 | 60 68 | mpan | |- ( ( C + B ) e. RR -> ( 0 < ( C + B ) -> 0 <_ ( C + B ) ) ) |
| 70 | 45 67 69 | sylc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 <_ ( C + B ) ) |
| 71 | 41 63 45 70 | sqrtltd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) < ( C + B ) <-> ( sqrt ` ( C - B ) ) < ( sqrt ` ( C + B ) ) ) ) |
| 72 | 57 71 | mpbid | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C - B ) ) < ( sqrt ` ( C + B ) ) ) |
| 73 | nnsub | |- ( ( ( sqrt ` ( C - B ) ) e. NN /\ ( sqrt ` ( C + B ) ) e. NN ) -> ( ( sqrt ` ( C - B ) ) < ( sqrt ` ( C + B ) ) <-> ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) e. NN ) ) |
|
| 74 | 22 2 73 | syl2anc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( sqrt ` ( C - B ) ) < ( sqrt ` ( C + B ) ) <-> ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) e. NN ) ) |
| 75 | 72 74 | mpbid | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) e. NN ) |
| 76 | 75 | nnzd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) e. ZZ ) |
| 77 | evend2 | |- ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) e. ZZ -> ( 2 || ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) <-> ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) e. ZZ ) ) |
|
| 78 | 76 77 | syl | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 2 || ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) <-> ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) e. ZZ ) ) |
| 79 | 39 78 | mpbid | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) e. ZZ ) |
| 80 | 75 | nngt0d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 < ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) ) |
| 81 | 75 | nnred | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) e. RR ) |
| 82 | halfpos2 | |- ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) e. RR -> ( 0 < ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) <-> 0 < ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ) ) |
|
| 83 | 81 82 | syl | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 0 < ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) <-> 0 < ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ) ) |
| 84 | 80 83 | mpbid | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 < ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ) |
| 85 | elnnz | |- ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) e. NN <-> ( ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) e. ZZ /\ 0 < ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) ) ) |
|
| 86 | 79 84 85 | sylanbrc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( sqrt ` ( C + B ) ) - ( sqrt ` ( C - B ) ) ) / 2 ) e. NN ) |
| 87 | 1 86 | eqeltrid | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> N e. NN ) |