This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pythagtrip . Calculate ( sqrt( C - B ) ) . (Contributed by Scott Fenton, 18-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pythagtriplem6 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C - B ) ) = ( ( C - B ) gcd A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz | |- ( C e. NN -> C e. ZZ ) |
|
| 2 | 1 | 3ad2ant3 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> C e. ZZ ) |
| 3 | nnz | |- ( B e. NN -> B e. ZZ ) |
|
| 4 | 3 | 3ad2ant2 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> B e. ZZ ) |
| 5 | 2 4 | zsubcld | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C - B ) e. ZZ ) |
| 6 | 5 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C - B ) e. ZZ ) |
| 7 | pythagtriplem10 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) ) -> 0 < ( C - B ) ) |
|
| 8 | 7 | 3adant3 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 < ( C - B ) ) |
| 9 | elnnz | |- ( ( C - B ) e. NN <-> ( ( C - B ) e. ZZ /\ 0 < ( C - B ) ) ) |
|
| 10 | 6 8 9 | sylanbrc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C - B ) e. NN ) |
| 11 | 10 | nnnn0d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C - B ) e. NN0 ) |
| 12 | simp3 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> C e. NN ) |
|
| 13 | simp2 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> B e. NN ) |
|
| 14 | 12 13 | nnaddcld | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C + B ) e. NN ) |
| 15 | 14 | nnzd | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C + B ) e. ZZ ) |
| 16 | 15 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C + B ) e. ZZ ) |
| 17 | nnnn0 | |- ( A e. NN -> A e. NN0 ) |
|
| 18 | 17 | 3ad2ant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. NN0 ) |
| 19 | 18 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A e. NN0 ) |
| 20 | 11 16 19 | 3jca | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) e. NN0 /\ ( C + B ) e. ZZ /\ A e. NN0 ) ) |
| 21 | pythagtriplem4 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) = 1 ) |
|
| 22 | 21 | oveq1d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C - B ) gcd ( C + B ) ) gcd A ) = ( 1 gcd A ) ) |
| 23 | nnz | |- ( A e. NN -> A e. ZZ ) |
|
| 24 | 23 | 3ad2ant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. ZZ ) |
| 25 | 24 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A e. ZZ ) |
| 26 | 1gcd | |- ( A e. ZZ -> ( 1 gcd A ) = 1 ) |
|
| 27 | 25 26 | syl | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 1 gcd A ) = 1 ) |
| 28 | 22 27 | eqtrd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C - B ) gcd ( C + B ) ) gcd A ) = 1 ) |
| 29 | 20 28 | jca | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C - B ) e. NN0 /\ ( C + B ) e. ZZ /\ A e. NN0 ) /\ ( ( ( C - B ) gcd ( C + B ) ) gcd A ) = 1 ) ) |
| 30 | oveq1 | |- ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( B ^ 2 ) ) = ( ( C ^ 2 ) - ( B ^ 2 ) ) ) |
|
| 31 | 30 | 3ad2ant2 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( B ^ 2 ) ) = ( ( C ^ 2 ) - ( B ^ 2 ) ) ) |
| 32 | 24 | zcnd | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. CC ) |
| 33 | 32 | sqcld | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( A ^ 2 ) e. CC ) |
| 34 | nncn | |- ( B e. NN -> B e. CC ) |
|
| 35 | 34 | 3ad2ant2 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> B e. CC ) |
| 36 | 35 | sqcld | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( B ^ 2 ) e. CC ) |
| 37 | 33 36 | pncand | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( B ^ 2 ) ) = ( A ^ 2 ) ) |
| 38 | 37 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( B ^ 2 ) ) = ( A ^ 2 ) ) |
| 39 | nncn | |- ( C e. NN -> C e. CC ) |
|
| 40 | 39 | 3ad2ant3 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> C e. CC ) |
| 41 | subsq | |- ( ( C e. CC /\ B e. CC ) -> ( ( C ^ 2 ) - ( B ^ 2 ) ) = ( ( C + B ) x. ( C - B ) ) ) |
|
| 42 | 40 35 41 | syl2anc | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( C ^ 2 ) - ( B ^ 2 ) ) = ( ( C + B ) x. ( C - B ) ) ) |
| 43 | 14 | nncnd | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C + B ) e. CC ) |
| 44 | 5 | zcnd | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C - B ) e. CC ) |
| 45 | 43 44 | mulcomd | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( C + B ) x. ( C - B ) ) = ( ( C - B ) x. ( C + B ) ) ) |
| 46 | 42 45 | eqtrd | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( C ^ 2 ) - ( B ^ 2 ) ) = ( ( C - B ) x. ( C + B ) ) ) |
| 47 | 46 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C ^ 2 ) - ( B ^ 2 ) ) = ( ( C - B ) x. ( C + B ) ) ) |
| 48 | 31 38 47 | 3eqtr3d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( A ^ 2 ) = ( ( C - B ) x. ( C + B ) ) ) |
| 49 | coprimeprodsq | |- ( ( ( ( C - B ) e. NN0 /\ ( C + B ) e. ZZ /\ A e. NN0 ) /\ ( ( ( C - B ) gcd ( C + B ) ) gcd A ) = 1 ) -> ( ( A ^ 2 ) = ( ( C - B ) x. ( C + B ) ) -> ( C - B ) = ( ( ( C - B ) gcd A ) ^ 2 ) ) ) |
|
| 50 | 29 48 49 | sylc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C - B ) = ( ( ( C - B ) gcd A ) ^ 2 ) ) |
| 51 | 50 | fveq2d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C - B ) ) = ( sqrt ` ( ( ( C - B ) gcd A ) ^ 2 ) ) ) |
| 52 | 6 25 | gcdcld | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd A ) e. NN0 ) |
| 53 | 52 | nn0red | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd A ) e. RR ) |
| 54 | 52 | nn0ge0d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 <_ ( ( C - B ) gcd A ) ) |
| 55 | 53 54 | sqrtsqd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( ( ( C - B ) gcd A ) ^ 2 ) ) = ( ( C - B ) gcd A ) ) |
| 56 | 51 55 | eqtrd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C - B ) ) = ( ( C - B ) gcd A ) ) |