This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pythagtrip . Show that ( sqrt( C + B ) ) is a positive integer. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pythagtriplem9 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C + B ) ) e. NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pythagtriplem7 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C + B ) ) = ( ( C + B ) gcd A ) ) |
|
| 2 | nnz | |- ( C e. NN -> C e. ZZ ) |
|
| 3 | nnz | |- ( B e. NN -> B e. ZZ ) |
|
| 4 | zaddcl | |- ( ( C e. ZZ /\ B e. ZZ ) -> ( C + B ) e. ZZ ) |
|
| 5 | 2 3 4 | syl2anr | |- ( ( B e. NN /\ C e. NN ) -> ( C + B ) e. ZZ ) |
| 6 | 5 | 3adant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C + B ) e. ZZ ) |
| 7 | 6 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C + B ) e. ZZ ) |
| 8 | nnz | |- ( A e. NN -> A e. ZZ ) |
|
| 9 | 8 | 3ad2ant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. ZZ ) |
| 10 | 9 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A e. ZZ ) |
| 11 | nnne0 | |- ( A e. NN -> A =/= 0 ) |
|
| 12 | 11 | neneqd | |- ( A e. NN -> -. A = 0 ) |
| 13 | 12 | intnand | |- ( A e. NN -> -. ( ( C + B ) = 0 /\ A = 0 ) ) |
| 14 | 13 | 3ad2ant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> -. ( ( C + B ) = 0 /\ A = 0 ) ) |
| 15 | 14 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> -. ( ( C + B ) = 0 /\ A = 0 ) ) |
| 16 | gcdn0cl | |- ( ( ( ( C + B ) e. ZZ /\ A e. ZZ ) /\ -. ( ( C + B ) = 0 /\ A = 0 ) ) -> ( ( C + B ) gcd A ) e. NN ) |
|
| 17 | 7 10 15 16 | syl21anc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C + B ) gcd A ) e. NN ) |
| 18 | 1 17 | eqeltrd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C + B ) ) e. NN ) |