This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omoe | |- ( ( ( A e. ZZ /\ -. 2 || A ) /\ ( B e. ZZ /\ -. 2 || B ) ) -> 2 || ( A - B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odd2np1 | |- ( A e. ZZ -> ( -. 2 || A <-> E. a e. ZZ ( ( 2 x. a ) + 1 ) = A ) ) |
|
| 2 | odd2np1 | |- ( B e. ZZ -> ( -. 2 || B <-> E. b e. ZZ ( ( 2 x. b ) + 1 ) = B ) ) |
|
| 3 | 1 2 | bi2anan9 | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( -. 2 || A /\ -. 2 || B ) <-> ( E. a e. ZZ ( ( 2 x. a ) + 1 ) = A /\ E. b e. ZZ ( ( 2 x. b ) + 1 ) = B ) ) ) |
| 4 | reeanv | |- ( E. a e. ZZ E. b e. ZZ ( ( ( 2 x. a ) + 1 ) = A /\ ( ( 2 x. b ) + 1 ) = B ) <-> ( E. a e. ZZ ( ( 2 x. a ) + 1 ) = A /\ E. b e. ZZ ( ( 2 x. b ) + 1 ) = B ) ) |
|
| 5 | 2z | |- 2 e. ZZ |
|
| 6 | zsubcl | |- ( ( a e. ZZ /\ b e. ZZ ) -> ( a - b ) e. ZZ ) |
|
| 7 | dvdsmul1 | |- ( ( 2 e. ZZ /\ ( a - b ) e. ZZ ) -> 2 || ( 2 x. ( a - b ) ) ) |
|
| 8 | 5 6 7 | sylancr | |- ( ( a e. ZZ /\ b e. ZZ ) -> 2 || ( 2 x. ( a - b ) ) ) |
| 9 | zcn | |- ( a e. ZZ -> a e. CC ) |
|
| 10 | zcn | |- ( b e. ZZ -> b e. CC ) |
|
| 11 | 2cn | |- 2 e. CC |
|
| 12 | mulcl | |- ( ( 2 e. CC /\ a e. CC ) -> ( 2 x. a ) e. CC ) |
|
| 13 | 11 12 | mpan | |- ( a e. CC -> ( 2 x. a ) e. CC ) |
| 14 | mulcl | |- ( ( 2 e. CC /\ b e. CC ) -> ( 2 x. b ) e. CC ) |
|
| 15 | 11 14 | mpan | |- ( b e. CC -> ( 2 x. b ) e. CC ) |
| 16 | ax-1cn | |- 1 e. CC |
|
| 17 | pnpcan2 | |- ( ( ( 2 x. a ) e. CC /\ ( 2 x. b ) e. CC /\ 1 e. CC ) -> ( ( ( 2 x. a ) + 1 ) - ( ( 2 x. b ) + 1 ) ) = ( ( 2 x. a ) - ( 2 x. b ) ) ) |
|
| 18 | 16 17 | mp3an3 | |- ( ( ( 2 x. a ) e. CC /\ ( 2 x. b ) e. CC ) -> ( ( ( 2 x. a ) + 1 ) - ( ( 2 x. b ) + 1 ) ) = ( ( 2 x. a ) - ( 2 x. b ) ) ) |
| 19 | 13 15 18 | syl2an | |- ( ( a e. CC /\ b e. CC ) -> ( ( ( 2 x. a ) + 1 ) - ( ( 2 x. b ) + 1 ) ) = ( ( 2 x. a ) - ( 2 x. b ) ) ) |
| 20 | subdi | |- ( ( 2 e. CC /\ a e. CC /\ b e. CC ) -> ( 2 x. ( a - b ) ) = ( ( 2 x. a ) - ( 2 x. b ) ) ) |
|
| 21 | 11 20 | mp3an1 | |- ( ( a e. CC /\ b e. CC ) -> ( 2 x. ( a - b ) ) = ( ( 2 x. a ) - ( 2 x. b ) ) ) |
| 22 | 19 21 | eqtr4d | |- ( ( a e. CC /\ b e. CC ) -> ( ( ( 2 x. a ) + 1 ) - ( ( 2 x. b ) + 1 ) ) = ( 2 x. ( a - b ) ) ) |
| 23 | 9 10 22 | syl2an | |- ( ( a e. ZZ /\ b e. ZZ ) -> ( ( ( 2 x. a ) + 1 ) - ( ( 2 x. b ) + 1 ) ) = ( 2 x. ( a - b ) ) ) |
| 24 | 8 23 | breqtrrd | |- ( ( a e. ZZ /\ b e. ZZ ) -> 2 || ( ( ( 2 x. a ) + 1 ) - ( ( 2 x. b ) + 1 ) ) ) |
| 25 | oveq12 | |- ( ( ( ( 2 x. a ) + 1 ) = A /\ ( ( 2 x. b ) + 1 ) = B ) -> ( ( ( 2 x. a ) + 1 ) - ( ( 2 x. b ) + 1 ) ) = ( A - B ) ) |
|
| 26 | 25 | breq2d | |- ( ( ( ( 2 x. a ) + 1 ) = A /\ ( ( 2 x. b ) + 1 ) = B ) -> ( 2 || ( ( ( 2 x. a ) + 1 ) - ( ( 2 x. b ) + 1 ) ) <-> 2 || ( A - B ) ) ) |
| 27 | 24 26 | syl5ibcom | |- ( ( a e. ZZ /\ b e. ZZ ) -> ( ( ( ( 2 x. a ) + 1 ) = A /\ ( ( 2 x. b ) + 1 ) = B ) -> 2 || ( A - B ) ) ) |
| 28 | 27 | rexlimivv | |- ( E. a e. ZZ E. b e. ZZ ( ( ( 2 x. a ) + 1 ) = A /\ ( ( 2 x. b ) + 1 ) = B ) -> 2 || ( A - B ) ) |
| 29 | 4 28 | sylbir | |- ( ( E. a e. ZZ ( ( 2 x. a ) + 1 ) = A /\ E. b e. ZZ ( ( 2 x. b ) + 1 ) = B ) -> 2 || ( A - B ) ) |
| 30 | 3 29 | biimtrdi | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( -. 2 || A /\ -. 2 || B ) -> 2 || ( A - B ) ) ) |
| 31 | 30 | imp | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( -. 2 || A /\ -. 2 || B ) ) -> 2 || ( A - B ) ) |
| 32 | 31 | an4s | |- ( ( ( A e. ZZ /\ -. 2 || A ) /\ ( B e. ZZ /\ -. 2 || B ) ) -> 2 || ( A - B ) ) |