This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pythagtrip . Calculate ( sqrt( C + B ) ) . (Contributed by Scott Fenton, 18-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pythagtriplem7 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C + B ) ) = ( ( C + B ) gcd A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> C e. NN ) |
|
| 2 | 1 | nnzd | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> C e. ZZ ) |
| 3 | simp2 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> B e. NN ) |
|
| 4 | 3 | nnzd | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> B e. ZZ ) |
| 5 | 2 4 | zsubcld | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C - B ) e. ZZ ) |
| 6 | 5 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C - B ) e. ZZ ) |
| 7 | 1 3 | nnaddcld | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C + B ) e. NN ) |
| 8 | 7 | nnnn0d | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C + B ) e. NN0 ) |
| 9 | 8 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C + B ) e. NN0 ) |
| 10 | nnnn0 | |- ( A e. NN -> A e. NN0 ) |
|
| 11 | 10 | 3ad2ant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. NN0 ) |
| 12 | 11 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A e. NN0 ) |
| 13 | 6 9 12 | 3jca | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) e. ZZ /\ ( C + B ) e. NN0 /\ A e. NN0 ) ) |
| 14 | pythagtriplem4 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd ( C + B ) ) = 1 ) |
|
| 15 | 14 | oveq1d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C - B ) gcd ( C + B ) ) gcd A ) = ( 1 gcd A ) ) |
| 16 | nnz | |- ( A e. NN -> A e. ZZ ) |
|
| 17 | 16 | 3ad2ant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. ZZ ) |
| 18 | 17 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> A e. ZZ ) |
| 19 | 1gcd | |- ( A e. ZZ -> ( 1 gcd A ) = 1 ) |
|
| 20 | 18 19 | syl | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( 1 gcd A ) = 1 ) |
| 21 | 15 20 | eqtrd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C - B ) gcd ( C + B ) ) gcd A ) = 1 ) |
| 22 | 13 21 | jca | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( C - B ) e. ZZ /\ ( C + B ) e. NN0 /\ A e. NN0 ) /\ ( ( ( C - B ) gcd ( C + B ) ) gcd A ) = 1 ) ) |
| 23 | oveq1 | |- ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( B ^ 2 ) ) = ( ( C ^ 2 ) - ( B ^ 2 ) ) ) |
|
| 24 | 23 | 3ad2ant2 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( B ^ 2 ) ) = ( ( C ^ 2 ) - ( B ^ 2 ) ) ) |
| 25 | nncn | |- ( A e. NN -> A e. CC ) |
|
| 26 | 25 | 3ad2ant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. CC ) |
| 27 | 26 | sqcld | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( A ^ 2 ) e. CC ) |
| 28 | 3 | nncnd | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> B e. CC ) |
| 29 | 28 | sqcld | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( B ^ 2 ) e. CC ) |
| 30 | 27 29 | pncand | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( B ^ 2 ) ) = ( A ^ 2 ) ) |
| 31 | 30 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) - ( B ^ 2 ) ) = ( A ^ 2 ) ) |
| 32 | 1 | nncnd | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> C e. CC ) |
| 33 | subsq | |- ( ( C e. CC /\ B e. CC ) -> ( ( C ^ 2 ) - ( B ^ 2 ) ) = ( ( C + B ) x. ( C - B ) ) ) |
|
| 34 | 32 28 33 | syl2anc | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( C ^ 2 ) - ( B ^ 2 ) ) = ( ( C + B ) x. ( C - B ) ) ) |
| 35 | 7 | nncnd | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C + B ) e. CC ) |
| 36 | 5 | zcnd | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C - B ) e. CC ) |
| 37 | 35 36 | mulcomd | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( C + B ) x. ( C - B ) ) = ( ( C - B ) x. ( C + B ) ) ) |
| 38 | 34 37 | eqtrd | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( C ^ 2 ) - ( B ^ 2 ) ) = ( ( C - B ) x. ( C + B ) ) ) |
| 39 | 38 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C ^ 2 ) - ( B ^ 2 ) ) = ( ( C - B ) x. ( C + B ) ) ) |
| 40 | 24 31 39 | 3eqtr3d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( A ^ 2 ) = ( ( C - B ) x. ( C + B ) ) ) |
| 41 | coprimeprodsq2 | |- ( ( ( ( C - B ) e. ZZ /\ ( C + B ) e. NN0 /\ A e. NN0 ) /\ ( ( ( C - B ) gcd ( C + B ) ) gcd A ) = 1 ) -> ( ( A ^ 2 ) = ( ( C - B ) x. ( C + B ) ) -> ( C + B ) = ( ( ( C + B ) gcd A ) ^ 2 ) ) ) |
|
| 42 | 22 40 41 | sylc | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C + B ) = ( ( ( C + B ) gcd A ) ^ 2 ) ) |
| 43 | 42 | fveq2d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C + B ) ) = ( sqrt ` ( ( ( C + B ) gcd A ) ^ 2 ) ) ) |
| 44 | 7 | nnzd | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C + B ) e. ZZ ) |
| 45 | 44 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( C + B ) e. ZZ ) |
| 46 | 45 18 | gcdcld | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C + B ) gcd A ) e. NN0 ) |
| 47 | 46 | nn0red | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C + B ) gcd A ) e. RR ) |
| 48 | 46 | nn0ge0d | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> 0 <_ ( ( C + B ) gcd A ) ) |
| 49 | 47 48 | sqrtsqd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( ( ( C + B ) gcd A ) ^ 2 ) ) = ( ( C + B ) gcd A ) ) |
| 50 | 43 49 | eqtrd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C + B ) ) = ( ( C + B ) gcd A ) ) |