This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Biconditional form of dvdsgcd . (Contributed by Scott Fenton, 2-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsgcdb | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || M /\ K || N ) <-> K || ( M gcd N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsgcd | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || M /\ K || N ) -> K || ( M gcd N ) ) ) |
|
| 2 | gcddvds | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) |
|
| 3 | 2 | simpld | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) || M ) |
| 4 | 3 | 3adant1 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) || M ) |
| 5 | simp1 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> K e. ZZ ) |
|
| 6 | gcdcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. NN0 ) |
|
| 7 | 6 | nn0zd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. ZZ ) |
| 8 | 7 | 3adant1 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. ZZ ) |
| 9 | simp2 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> M e. ZZ ) |
|
| 10 | dvdstr | |- ( ( K e. ZZ /\ ( M gcd N ) e. ZZ /\ M e. ZZ ) -> ( ( K || ( M gcd N ) /\ ( M gcd N ) || M ) -> K || M ) ) |
|
| 11 | 5 8 9 10 | syl3anc | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || ( M gcd N ) /\ ( M gcd N ) || M ) -> K || M ) ) |
| 12 | 4 11 | mpan2d | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K || ( M gcd N ) -> K || M ) ) |
| 13 | 2 | simprd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) || N ) |
| 14 | 13 | 3adant1 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) || N ) |
| 15 | dvdstr | |- ( ( K e. ZZ /\ ( M gcd N ) e. ZZ /\ N e. ZZ ) -> ( ( K || ( M gcd N ) /\ ( M gcd N ) || N ) -> K || N ) ) |
|
| 16 | 8 15 | syld3an2 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || ( M gcd N ) /\ ( M gcd N ) || N ) -> K || N ) ) |
| 17 | 14 16 | mpan2d | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K || ( M gcd N ) -> K || N ) ) |
| 18 | 12 17 | jcad | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K || ( M gcd N ) -> ( K || M /\ K || N ) ) ) |
| 19 | 1 18 | impbid | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || M /\ K || N ) <-> K || ( M gcd N ) ) ) |