This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pythagtrip . Show that ( sqrt( C - B ) ) is a positive integer. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pythagtriplem8 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C - B ) ) e. NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pythagtriplem6 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C - B ) ) = ( ( C - B ) gcd A ) ) |
|
| 2 | nnz | |- ( C e. NN -> C e. ZZ ) |
|
| 3 | nnz | |- ( B e. NN -> B e. ZZ ) |
|
| 4 | zsubcl | |- ( ( C e. ZZ /\ B e. ZZ ) -> ( C - B ) e. ZZ ) |
|
| 5 | 2 3 4 | syl2anr | |- ( ( B e. NN /\ C e. NN ) -> ( C - B ) e. ZZ ) |
| 6 | 5 | 3adant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( C - B ) e. ZZ ) |
| 7 | nnz | |- ( A e. NN -> A e. ZZ ) |
|
| 8 | 7 | 3ad2ant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> A e. ZZ ) |
| 9 | nnne0 | |- ( A e. NN -> A =/= 0 ) |
|
| 10 | 9 | neneqd | |- ( A e. NN -> -. A = 0 ) |
| 11 | 10 | intnand | |- ( A e. NN -> -. ( ( C - B ) = 0 /\ A = 0 ) ) |
| 12 | 11 | 3ad2ant1 | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> -. ( ( C - B ) = 0 /\ A = 0 ) ) |
| 13 | gcdn0cl | |- ( ( ( ( C - B ) e. ZZ /\ A e. ZZ ) /\ -. ( ( C - B ) = 0 /\ A = 0 ) ) -> ( ( C - B ) gcd A ) e. NN ) |
|
| 14 | 6 8 12 13 | syl21anc | |- ( ( A e. NN /\ B e. NN /\ C e. NN ) -> ( ( C - B ) gcd A ) e. NN ) |
| 15 | 14 | 3ad2ant1 | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( ( C - B ) gcd A ) e. NN ) |
| 16 | 1 15 | eqeltrd | |- ( ( ( A e. NN /\ B e. NN /\ C e. NN ) /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( C ^ 2 ) /\ ( ( A gcd B ) = 1 /\ -. 2 || A ) ) -> ( sqrt ` ( C - B ) ) e. NN ) |