This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pwfseqlem4 . (Contributed by Mario Carneiro, 7-Jun-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwfseqlem4.g | |- ( ph -> G : ~P A -1-1-> U_ n e. _om ( A ^m n ) ) |
|
| pwfseqlem4.x | |- ( ph -> X C_ A ) |
||
| pwfseqlem4.h | |- ( ph -> H : _om -1-1-onto-> X ) |
||
| pwfseqlem4.ps | |- ( ps <-> ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) /\ _om ~<_ x ) ) |
||
| pwfseqlem4.k | |- ( ( ph /\ ps ) -> K : U_ n e. _om ( x ^m n ) -1-1-> x ) |
||
| pwfseqlem4.d | |- D = ( G ` { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) |
||
| pwfseqlem4.f | |- F = ( x e. _V , r e. _V |-> if ( x e. Fin , ( H ` ( card ` x ) ) , ( D ` |^| { z e. _om | -. ( D ` z ) e. x } ) ) ) |
||
| Assertion | pwfseqlem4a | |- ( ( ph /\ ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) ) -> ( a F s ) e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwfseqlem4.g | |- ( ph -> G : ~P A -1-1-> U_ n e. _om ( A ^m n ) ) |
|
| 2 | pwfseqlem4.x | |- ( ph -> X C_ A ) |
|
| 3 | pwfseqlem4.h | |- ( ph -> H : _om -1-1-onto-> X ) |
|
| 4 | pwfseqlem4.ps | |- ( ps <-> ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) /\ _om ~<_ x ) ) |
|
| 5 | pwfseqlem4.k | |- ( ( ph /\ ps ) -> K : U_ n e. _om ( x ^m n ) -1-1-> x ) |
|
| 6 | pwfseqlem4.d | |- D = ( G ` { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) |
|
| 7 | pwfseqlem4.f | |- F = ( x e. _V , r e. _V |-> if ( x e. Fin , ( H ` ( card ` x ) ) , ( D ` |^| { z e. _om | -. ( D ` z ) e. x } ) ) ) |
|
| 8 | isfinite | |- ( a e. Fin <-> a ~< _om ) |
|
| 9 | simpr | |- ( ( ph /\ a e. Fin ) -> a e. Fin ) |
|
| 10 | vex | |- s e. _V |
|
| 11 | 1 2 3 4 5 6 7 | pwfseqlem2 | |- ( ( a e. Fin /\ s e. _V ) -> ( a F s ) = ( H ` ( card ` a ) ) ) |
| 12 | 9 10 11 | sylancl | |- ( ( ph /\ a e. Fin ) -> ( a F s ) = ( H ` ( card ` a ) ) ) |
| 13 | f1of | |- ( H : _om -1-1-onto-> X -> H : _om --> X ) |
|
| 14 | 3 13 | syl | |- ( ph -> H : _om --> X ) |
| 15 | 14 2 | fssd | |- ( ph -> H : _om --> A ) |
| 16 | ficardom | |- ( a e. Fin -> ( card ` a ) e. _om ) |
|
| 17 | ffvelcdm | |- ( ( H : _om --> A /\ ( card ` a ) e. _om ) -> ( H ` ( card ` a ) ) e. A ) |
|
| 18 | 15 16 17 | syl2an | |- ( ( ph /\ a e. Fin ) -> ( H ` ( card ` a ) ) e. A ) |
| 19 | 12 18 | eqeltrd | |- ( ( ph /\ a e. Fin ) -> ( a F s ) e. A ) |
| 20 | 19 | ex | |- ( ph -> ( a e. Fin -> ( a F s ) e. A ) ) |
| 21 | 20 | adantr | |- ( ( ph /\ ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) ) -> ( a e. Fin -> ( a F s ) e. A ) ) |
| 22 | 8 21 | biimtrrid | |- ( ( ph /\ ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) ) -> ( a ~< _om -> ( a F s ) e. A ) ) |
| 23 | omelon | |- _om e. On |
|
| 24 | onenon | |- ( _om e. On -> _om e. dom card ) |
|
| 25 | 23 24 | ax-mp | |- _om e. dom card |
| 26 | simpr3 | |- ( ( ph /\ ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) ) -> s We a ) |
|
| 27 | 26 | 19.8ad | |- ( ( ph /\ ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) ) -> E. s s We a ) |
| 28 | ween | |- ( a e. dom card <-> E. s s We a ) |
|
| 29 | 27 28 | sylibr | |- ( ( ph /\ ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) ) -> a e. dom card ) |
| 30 | domtri2 | |- ( ( _om e. dom card /\ a e. dom card ) -> ( _om ~<_ a <-> -. a ~< _om ) ) |
|
| 31 | 25 29 30 | sylancr | |- ( ( ph /\ ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) ) -> ( _om ~<_ a <-> -. a ~< _om ) ) |
| 32 | nfv | |- F/ r ( ph /\ ( ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) /\ _om ~<_ a ) ) |
|
| 33 | nfcv | |- F/_ r a |
|
| 34 | nfmpo2 | |- F/_ r ( x e. _V , r e. _V |-> if ( x e. Fin , ( H ` ( card ` x ) ) , ( D ` |^| { z e. _om | -. ( D ` z ) e. x } ) ) ) |
|
| 35 | 7 34 | nfcxfr | |- F/_ r F |
| 36 | nfcv | |- F/_ r s |
|
| 37 | 33 35 36 | nfov | |- F/_ r ( a F s ) |
| 38 | 37 | nfel1 | |- F/ r ( a F s ) e. ( A \ a ) |
| 39 | 32 38 | nfim | |- F/ r ( ( ph /\ ( ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) /\ _om ~<_ a ) ) -> ( a F s ) e. ( A \ a ) ) |
| 40 | sseq1 | |- ( r = s -> ( r C_ ( a X. a ) <-> s C_ ( a X. a ) ) ) |
|
| 41 | weeq1 | |- ( r = s -> ( r We a <-> s We a ) ) |
|
| 42 | 40 41 | 3anbi23d | |- ( r = s -> ( ( a C_ A /\ r C_ ( a X. a ) /\ r We a ) <-> ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) ) ) |
| 43 | 42 | anbi1d | |- ( r = s -> ( ( ( a C_ A /\ r C_ ( a X. a ) /\ r We a ) /\ _om ~<_ a ) <-> ( ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) /\ _om ~<_ a ) ) ) |
| 44 | 43 | anbi2d | |- ( r = s -> ( ( ph /\ ( ( a C_ A /\ r C_ ( a X. a ) /\ r We a ) /\ _om ~<_ a ) ) <-> ( ph /\ ( ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) /\ _om ~<_ a ) ) ) ) |
| 45 | oveq2 | |- ( r = s -> ( a F r ) = ( a F s ) ) |
|
| 46 | 45 | eleq1d | |- ( r = s -> ( ( a F r ) e. ( A \ a ) <-> ( a F s ) e. ( A \ a ) ) ) |
| 47 | 44 46 | imbi12d | |- ( r = s -> ( ( ( ph /\ ( ( a C_ A /\ r C_ ( a X. a ) /\ r We a ) /\ _om ~<_ a ) ) -> ( a F r ) e. ( A \ a ) ) <-> ( ( ph /\ ( ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) /\ _om ~<_ a ) ) -> ( a F s ) e. ( A \ a ) ) ) ) |
| 48 | nfv | |- F/ x ( ph /\ ( ( a C_ A /\ r C_ ( a X. a ) /\ r We a ) /\ _om ~<_ a ) ) |
|
| 49 | nfcv | |- F/_ x a |
|
| 50 | nfmpo1 | |- F/_ x ( x e. _V , r e. _V |-> if ( x e. Fin , ( H ` ( card ` x ) ) , ( D ` |^| { z e. _om | -. ( D ` z ) e. x } ) ) ) |
|
| 51 | 7 50 | nfcxfr | |- F/_ x F |
| 52 | nfcv | |- F/_ x r |
|
| 53 | 49 51 52 | nfov | |- F/_ x ( a F r ) |
| 54 | 53 | nfel1 | |- F/ x ( a F r ) e. ( A \ a ) |
| 55 | 48 54 | nfim | |- F/ x ( ( ph /\ ( ( a C_ A /\ r C_ ( a X. a ) /\ r We a ) /\ _om ~<_ a ) ) -> ( a F r ) e. ( A \ a ) ) |
| 56 | sseq1 | |- ( x = a -> ( x C_ A <-> a C_ A ) ) |
|
| 57 | xpeq12 | |- ( ( x = a /\ x = a ) -> ( x X. x ) = ( a X. a ) ) |
|
| 58 | 57 | anidms | |- ( x = a -> ( x X. x ) = ( a X. a ) ) |
| 59 | 58 | sseq2d | |- ( x = a -> ( r C_ ( x X. x ) <-> r C_ ( a X. a ) ) ) |
| 60 | weeq2 | |- ( x = a -> ( r We x <-> r We a ) ) |
|
| 61 | 56 59 60 | 3anbi123d | |- ( x = a -> ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) <-> ( a C_ A /\ r C_ ( a X. a ) /\ r We a ) ) ) |
| 62 | breq2 | |- ( x = a -> ( _om ~<_ x <-> _om ~<_ a ) ) |
|
| 63 | 61 62 | anbi12d | |- ( x = a -> ( ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) /\ _om ~<_ x ) <-> ( ( a C_ A /\ r C_ ( a X. a ) /\ r We a ) /\ _om ~<_ a ) ) ) |
| 64 | 4 63 | bitrid | |- ( x = a -> ( ps <-> ( ( a C_ A /\ r C_ ( a X. a ) /\ r We a ) /\ _om ~<_ a ) ) ) |
| 65 | 64 | anbi2d | |- ( x = a -> ( ( ph /\ ps ) <-> ( ph /\ ( ( a C_ A /\ r C_ ( a X. a ) /\ r We a ) /\ _om ~<_ a ) ) ) ) |
| 66 | oveq1 | |- ( x = a -> ( x F r ) = ( a F r ) ) |
|
| 67 | difeq2 | |- ( x = a -> ( A \ x ) = ( A \ a ) ) |
|
| 68 | 66 67 | eleq12d | |- ( x = a -> ( ( x F r ) e. ( A \ x ) <-> ( a F r ) e. ( A \ a ) ) ) |
| 69 | 65 68 | imbi12d | |- ( x = a -> ( ( ( ph /\ ps ) -> ( x F r ) e. ( A \ x ) ) <-> ( ( ph /\ ( ( a C_ A /\ r C_ ( a X. a ) /\ r We a ) /\ _om ~<_ a ) ) -> ( a F r ) e. ( A \ a ) ) ) ) |
| 70 | 1 2 3 4 5 6 7 | pwfseqlem3 | |- ( ( ph /\ ps ) -> ( x F r ) e. ( A \ x ) ) |
| 71 | 55 69 70 | chvarfv | |- ( ( ph /\ ( ( a C_ A /\ r C_ ( a X. a ) /\ r We a ) /\ _om ~<_ a ) ) -> ( a F r ) e. ( A \ a ) ) |
| 72 | 39 47 71 | chvarfv | |- ( ( ph /\ ( ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) /\ _om ~<_ a ) ) -> ( a F s ) e. ( A \ a ) ) |
| 73 | 72 | eldifad | |- ( ( ph /\ ( ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) /\ _om ~<_ a ) ) -> ( a F s ) e. A ) |
| 74 | 73 | expr | |- ( ( ph /\ ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) ) -> ( _om ~<_ a -> ( a F s ) e. A ) ) |
| 75 | 31 74 | sylbird | |- ( ( ph /\ ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) ) -> ( -. a ~< _om -> ( a F s ) e. A ) ) |
| 76 | 22 75 | pm2.61d | |- ( ( ph /\ ( a C_ A /\ s C_ ( a X. a ) /\ s We a ) ) -> ( a F s ) e. A ) |