This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pwfseq . (Contributed by Mario Carneiro, 18-Nov-2014) (Revised by AV, 18-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwfseqlem4.g | |- ( ph -> G : ~P A -1-1-> U_ n e. _om ( A ^m n ) ) |
|
| pwfseqlem4.x | |- ( ph -> X C_ A ) |
||
| pwfseqlem4.h | |- ( ph -> H : _om -1-1-onto-> X ) |
||
| pwfseqlem4.ps | |- ( ps <-> ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) /\ _om ~<_ x ) ) |
||
| pwfseqlem4.k | |- ( ( ph /\ ps ) -> K : U_ n e. _om ( x ^m n ) -1-1-> x ) |
||
| pwfseqlem4.d | |- D = ( G ` { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) |
||
| pwfseqlem4.f | |- F = ( x e. _V , r e. _V |-> if ( x e. Fin , ( H ` ( card ` x ) ) , ( D ` |^| { z e. _om | -. ( D ` z ) e. x } ) ) ) |
||
| Assertion | pwfseqlem2 | |- ( ( Y e. Fin /\ R e. V ) -> ( Y F R ) = ( H ` ( card ` Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwfseqlem4.g | |- ( ph -> G : ~P A -1-1-> U_ n e. _om ( A ^m n ) ) |
|
| 2 | pwfseqlem4.x | |- ( ph -> X C_ A ) |
|
| 3 | pwfseqlem4.h | |- ( ph -> H : _om -1-1-onto-> X ) |
|
| 4 | pwfseqlem4.ps | |- ( ps <-> ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) /\ _om ~<_ x ) ) |
|
| 5 | pwfseqlem4.k | |- ( ( ph /\ ps ) -> K : U_ n e. _om ( x ^m n ) -1-1-> x ) |
|
| 6 | pwfseqlem4.d | |- D = ( G ` { w e. x | ( ( `' K ` w ) e. ran G /\ -. w e. ( `' G ` ( `' K ` w ) ) ) } ) |
|
| 7 | pwfseqlem4.f | |- F = ( x e. _V , r e. _V |-> if ( x e. Fin , ( H ` ( card ` x ) ) , ( D ` |^| { z e. _om | -. ( D ` z ) e. x } ) ) ) |
|
| 8 | oveq1 | |- ( a = Y -> ( a F s ) = ( Y F s ) ) |
|
| 9 | 2fveq3 | |- ( a = Y -> ( H ` ( card ` a ) ) = ( H ` ( card ` Y ) ) ) |
|
| 10 | 8 9 | eqeq12d | |- ( a = Y -> ( ( a F s ) = ( H ` ( card ` a ) ) <-> ( Y F s ) = ( H ` ( card ` Y ) ) ) ) |
| 11 | oveq2 | |- ( s = R -> ( Y F s ) = ( Y F R ) ) |
|
| 12 | 11 | eqeq1d | |- ( s = R -> ( ( Y F s ) = ( H ` ( card ` Y ) ) <-> ( Y F R ) = ( H ` ( card ` Y ) ) ) ) |
| 13 | nfcv | |- F/_ x a |
|
| 14 | nfcv | |- F/_ r a |
|
| 15 | nfcv | |- F/_ r s |
|
| 16 | nfmpo1 | |- F/_ x ( x e. _V , r e. _V |-> if ( x e. Fin , ( H ` ( card ` x ) ) , ( D ` |^| { z e. _om | -. ( D ` z ) e. x } ) ) ) |
|
| 17 | 7 16 | nfcxfr | |- F/_ x F |
| 18 | nfcv | |- F/_ x r |
|
| 19 | 13 17 18 | nfov | |- F/_ x ( a F r ) |
| 20 | 19 | nfeq1 | |- F/ x ( a F r ) = ( H ` ( card ` a ) ) |
| 21 | nfmpo2 | |- F/_ r ( x e. _V , r e. _V |-> if ( x e. Fin , ( H ` ( card ` x ) ) , ( D ` |^| { z e. _om | -. ( D ` z ) e. x } ) ) ) |
|
| 22 | 7 21 | nfcxfr | |- F/_ r F |
| 23 | 14 22 15 | nfov | |- F/_ r ( a F s ) |
| 24 | 23 | nfeq1 | |- F/ r ( a F s ) = ( H ` ( card ` a ) ) |
| 25 | oveq1 | |- ( x = a -> ( x F r ) = ( a F r ) ) |
|
| 26 | 2fveq3 | |- ( x = a -> ( H ` ( card ` x ) ) = ( H ` ( card ` a ) ) ) |
|
| 27 | 25 26 | eqeq12d | |- ( x = a -> ( ( x F r ) = ( H ` ( card ` x ) ) <-> ( a F r ) = ( H ` ( card ` a ) ) ) ) |
| 28 | oveq2 | |- ( r = s -> ( a F r ) = ( a F s ) ) |
|
| 29 | 28 | eqeq1d | |- ( r = s -> ( ( a F r ) = ( H ` ( card ` a ) ) <-> ( a F s ) = ( H ` ( card ` a ) ) ) ) |
| 30 | vex | |- x e. _V |
|
| 31 | vex | |- r e. _V |
|
| 32 | fvex | |- ( H ` ( card ` x ) ) e. _V |
|
| 33 | fvex | |- ( D ` |^| { z e. _om | -. ( D ` z ) e. x } ) e. _V |
|
| 34 | 32 33 | ifex | |- if ( x e. Fin , ( H ` ( card ` x ) ) , ( D ` |^| { z e. _om | -. ( D ` z ) e. x } ) ) e. _V |
| 35 | 7 | ovmpt4g | |- ( ( x e. _V /\ r e. _V /\ if ( x e. Fin , ( H ` ( card ` x ) ) , ( D ` |^| { z e. _om | -. ( D ` z ) e. x } ) ) e. _V ) -> ( x F r ) = if ( x e. Fin , ( H ` ( card ` x ) ) , ( D ` |^| { z e. _om | -. ( D ` z ) e. x } ) ) ) |
| 36 | 30 31 34 35 | mp3an | |- ( x F r ) = if ( x e. Fin , ( H ` ( card ` x ) ) , ( D ` |^| { z e. _om | -. ( D ` z ) e. x } ) ) |
| 37 | iftrue | |- ( x e. Fin -> if ( x e. Fin , ( H ` ( card ` x ) ) , ( D ` |^| { z e. _om | -. ( D ` z ) e. x } ) ) = ( H ` ( card ` x ) ) ) |
|
| 38 | 36 37 | eqtrid | |- ( x e. Fin -> ( x F r ) = ( H ` ( card ` x ) ) ) |
| 39 | 38 | adantr | |- ( ( x e. Fin /\ r e. V ) -> ( x F r ) = ( H ` ( card ` x ) ) ) |
| 40 | 13 14 15 20 24 27 29 39 | vtocl2gaf | |- ( ( a e. Fin /\ s e. V ) -> ( a F s ) = ( H ` ( card ` a ) ) ) |
| 41 | 10 12 40 | vtocl2ga | |- ( ( Y e. Fin /\ R e. V ) -> ( Y F R ) = ( H ` ( card ` Y ) ) ) |