This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ptolemy's Theorem. This theorem is named after the Greek astronomer and mathematician Ptolemy (Claudius Ptolemaeus). This particular version is expressed using the sine function. It is proved by expanding all the multiplication of sines to a product of cosines of differences using sinmul , then using algebraic simplification to show that both sides are equal. This formalization is based on the proof in "Trigonometry" by Gelfand and Saul. This is Metamath 100 proof #95. (Contributed by David A. Wheeler, 31-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ptolemy | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( ( sin ` A ) x. ( sin ` B ) ) + ( ( sin ` C ) x. ( sin ` D ) ) ) = ( ( sin ` ( B + C ) ) x. ( sin ` ( A + C ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcl | |- ( ( C e. CC /\ D e. CC ) -> ( C + D ) e. CC ) |
|
| 2 | 1 | 3ad2ant2 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( C + D ) e. CC ) |
| 3 | 2 | coscld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( cos ` ( C + D ) ) e. CC ) |
| 4 | 3 | negnegd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> -u -u ( cos ` ( C + D ) ) = ( cos ` ( C + D ) ) ) |
| 5 | addlid | |- ( ( C + D ) e. CC -> ( 0 + ( C + D ) ) = ( C + D ) ) |
|
| 6 | 5 | oveq1d | |- ( ( C + D ) e. CC -> ( ( 0 + ( C + D ) ) - ( ( A + B ) + ( C + D ) ) ) = ( ( C + D ) - ( ( A + B ) + ( C + D ) ) ) ) |
| 7 | 2 6 | syl | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( 0 + ( C + D ) ) - ( ( A + B ) + ( C + D ) ) ) = ( ( C + D ) - ( ( A + B ) + ( C + D ) ) ) ) |
| 8 | 0cnd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> 0 e. CC ) |
|
| 9 | addcl | |- ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) |
|
| 10 | 9 | adantr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( A + B ) e. CC ) |
| 11 | 10 | 3adant3 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( A + B ) e. CC ) |
| 12 | 8 11 2 | pnpcan2d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( 0 + ( C + D ) ) - ( ( A + B ) + ( C + D ) ) ) = ( 0 - ( A + B ) ) ) |
| 13 | simp3 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( A + B ) + ( C + D ) ) = _pi ) |
|
| 14 | 13 | oveq2d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( C + D ) - ( ( A + B ) + ( C + D ) ) ) = ( ( C + D ) - _pi ) ) |
| 15 | 7 12 14 | 3eqtr3rd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( C + D ) - _pi ) = ( 0 - ( A + B ) ) ) |
| 16 | df-neg | |- -u ( A + B ) = ( 0 - ( A + B ) ) |
|
| 17 | 15 16 | eqtr4di | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( C + D ) - _pi ) = -u ( A + B ) ) |
| 18 | 17 | fveq2d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( cos ` ( ( C + D ) - _pi ) ) = ( cos ` -u ( A + B ) ) ) |
| 19 | cosmpi | |- ( ( C + D ) e. CC -> ( cos ` ( ( C + D ) - _pi ) ) = -u ( cos ` ( C + D ) ) ) |
|
| 20 | 2 19 | syl | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( cos ` ( ( C + D ) - _pi ) ) = -u ( cos ` ( C + D ) ) ) |
| 21 | cosneg | |- ( ( A + B ) e. CC -> ( cos ` -u ( A + B ) ) = ( cos ` ( A + B ) ) ) |
|
| 22 | 11 21 | syl | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( cos ` -u ( A + B ) ) = ( cos ` ( A + B ) ) ) |
| 23 | 18 20 22 | 3eqtr3d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> -u ( cos ` ( C + D ) ) = ( cos ` ( A + B ) ) ) |
| 24 | 23 | negeqd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> -u -u ( cos ` ( C + D ) ) = -u ( cos ` ( A + B ) ) ) |
| 25 | 4 24 | eqtr3d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( cos ` ( C + D ) ) = -u ( cos ` ( A + B ) ) ) |
| 26 | 25 | oveq2d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( cos ` ( C - D ) ) - ( cos ` ( C + D ) ) ) = ( ( cos ` ( C - D ) ) - -u ( cos ` ( A + B ) ) ) ) |
| 27 | subcl | |- ( ( C e. CC /\ D e. CC ) -> ( C - D ) e. CC ) |
|
| 28 | 27 | adantl | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( C - D ) e. CC ) |
| 29 | 28 | coscld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( cos ` ( C - D ) ) e. CC ) |
| 30 | 29 | 3adant3 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( cos ` ( C - D ) ) e. CC ) |
| 31 | 11 | coscld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( cos ` ( A + B ) ) e. CC ) |
| 32 | 30 31 | subnegd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( cos ` ( C - D ) ) - -u ( cos ` ( A + B ) ) ) = ( ( cos ` ( C - D ) ) + ( cos ` ( A + B ) ) ) ) |
| 33 | 26 32 | eqtrd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( cos ` ( C - D ) ) - ( cos ` ( C + D ) ) ) = ( ( cos ` ( C - D ) ) + ( cos ` ( A + B ) ) ) ) |
| 34 | 33 | oveq1d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( ( cos ` ( C - D ) ) - ( cos ` ( C + D ) ) ) / 2 ) = ( ( ( cos ` ( C - D ) ) + ( cos ` ( A + B ) ) ) / 2 ) ) |
| 35 | 34 | oveq2d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( ( ( cos ` ( A - B ) ) - ( cos ` ( A + B ) ) ) / 2 ) + ( ( ( cos ` ( C - D ) ) - ( cos ` ( C + D ) ) ) / 2 ) ) = ( ( ( ( cos ` ( A - B ) ) - ( cos ` ( A + B ) ) ) / 2 ) + ( ( ( cos ` ( C - D ) ) + ( cos ` ( A + B ) ) ) / 2 ) ) ) |
| 36 | subcl | |- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |
|
| 37 | 36 | 3ad2ant1 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( A - B ) e. CC ) |
| 38 | 37 | coscld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( cos ` ( A - B ) ) e. CC ) |
| 39 | 38 31 | subcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( cos ` ( A - B ) ) - ( cos ` ( A + B ) ) ) e. CC ) |
| 40 | 30 31 | addcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( cos ` ( C - D ) ) + ( cos ` ( A + B ) ) ) e. CC ) |
| 41 | 2cnne0 | |- ( 2 e. CC /\ 2 =/= 0 ) |
|
| 42 | 41 | a1i | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( 2 e. CC /\ 2 =/= 0 ) ) |
| 43 | divdir | |- ( ( ( ( cos ` ( A - B ) ) - ( cos ` ( A + B ) ) ) e. CC /\ ( ( cos ` ( C - D ) ) + ( cos ` ( A + B ) ) ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( ( cos ` ( A - B ) ) - ( cos ` ( A + B ) ) ) + ( ( cos ` ( C - D ) ) + ( cos ` ( A + B ) ) ) ) / 2 ) = ( ( ( ( cos ` ( A - B ) ) - ( cos ` ( A + B ) ) ) / 2 ) + ( ( ( cos ` ( C - D ) ) + ( cos ` ( A + B ) ) ) / 2 ) ) ) |
|
| 44 | 39 40 42 43 | syl3anc | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( ( ( cos ` ( A - B ) ) - ( cos ` ( A + B ) ) ) + ( ( cos ` ( C - D ) ) + ( cos ` ( A + B ) ) ) ) / 2 ) = ( ( ( ( cos ` ( A - B ) ) - ( cos ` ( A + B ) ) ) / 2 ) + ( ( ( cos ` ( C - D ) ) + ( cos ` ( A + B ) ) ) / 2 ) ) ) |
| 45 | 38 31 30 | nppcan3d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( ( cos ` ( A - B ) ) - ( cos ` ( A + B ) ) ) + ( ( cos ` ( C - D ) ) + ( cos ` ( A + B ) ) ) ) = ( ( cos ` ( A - B ) ) + ( cos ` ( C - D ) ) ) ) |
| 46 | 45 | oveq1d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( ( ( cos ` ( A - B ) ) - ( cos ` ( A + B ) ) ) + ( ( cos ` ( C - D ) ) + ( cos ` ( A + B ) ) ) ) / 2 ) = ( ( ( cos ` ( A - B ) ) + ( cos ` ( C - D ) ) ) / 2 ) ) |
| 47 | 44 46 | eqtr3d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( ( ( cos ` ( A - B ) ) - ( cos ` ( A + B ) ) ) / 2 ) + ( ( ( cos ` ( C - D ) ) + ( cos ` ( A + B ) ) ) / 2 ) ) = ( ( ( cos ` ( A - B ) ) + ( cos ` ( C - D ) ) ) / 2 ) ) |
| 48 | 35 47 | eqtrd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( ( ( cos ` ( A - B ) ) - ( cos ` ( A + B ) ) ) / 2 ) + ( ( ( cos ` ( C - D ) ) - ( cos ` ( C + D ) ) ) / 2 ) ) = ( ( ( cos ` ( A - B ) ) + ( cos ` ( C - D ) ) ) / 2 ) ) |
| 49 | sinmul | |- ( ( A e. CC /\ B e. CC ) -> ( ( sin ` A ) x. ( sin ` B ) ) = ( ( ( cos ` ( A - B ) ) - ( cos ` ( A + B ) ) ) / 2 ) ) |
|
| 50 | 49 | 3ad2ant1 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( sin ` A ) x. ( sin ` B ) ) = ( ( ( cos ` ( A - B ) ) - ( cos ` ( A + B ) ) ) / 2 ) ) |
| 51 | sinmul | |- ( ( C e. CC /\ D e. CC ) -> ( ( sin ` C ) x. ( sin ` D ) ) = ( ( ( cos ` ( C - D ) ) - ( cos ` ( C + D ) ) ) / 2 ) ) |
|
| 52 | 51 | 3ad2ant2 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( sin ` C ) x. ( sin ` D ) ) = ( ( ( cos ` ( C - D ) ) - ( cos ` ( C + D ) ) ) / 2 ) ) |
| 53 | 50 52 | oveq12d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( ( sin ` A ) x. ( sin ` B ) ) + ( ( sin ` C ) x. ( sin ` D ) ) ) = ( ( ( ( cos ` ( A - B ) ) - ( cos ` ( A + B ) ) ) / 2 ) + ( ( ( cos ` ( C - D ) ) - ( cos ` ( C + D ) ) ) / 2 ) ) ) |
| 54 | simplr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> B e. CC ) |
|
| 55 | simpll | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> A e. CC ) |
|
| 56 | simprl | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> C e. CC ) |
|
| 57 | 54 55 56 | pnpcan2d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( B + C ) - ( A + C ) ) = ( B - A ) ) |
| 58 | 57 | fveq2d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( cos ` ( ( B + C ) - ( A + C ) ) ) = ( cos ` ( B - A ) ) ) |
| 59 | 58 | 3adant3 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( cos ` ( ( B + C ) - ( A + C ) ) ) = ( cos ` ( B - A ) ) ) |
| 60 | 1 | adantl | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( C + D ) e. CC ) |
| 61 | 10 60 28 | 3jca | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) e. CC /\ ( C + D ) e. CC /\ ( C - D ) e. CC ) ) |
| 62 | 61 | 3adant3 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( A + B ) e. CC /\ ( C + D ) e. CC /\ ( C - D ) e. CC ) ) |
| 63 | addass | |- ( ( ( A + B ) e. CC /\ ( C + D ) e. CC /\ ( C - D ) e. CC ) -> ( ( ( A + B ) + ( C + D ) ) + ( C - D ) ) = ( ( A + B ) + ( ( C + D ) + ( C - D ) ) ) ) |
|
| 64 | 62 63 | syl | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( ( A + B ) + ( C + D ) ) + ( C - D ) ) = ( ( A + B ) + ( ( C + D ) + ( C - D ) ) ) ) |
| 65 | oveq1 | |- ( ( ( A + B ) + ( C + D ) ) = _pi -> ( ( ( A + B ) + ( C + D ) ) + ( C - D ) ) = ( _pi + ( C - D ) ) ) |
|
| 66 | 65 | 3ad2ant3 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( ( A + B ) + ( C + D ) ) + ( C - D ) ) = ( _pi + ( C - D ) ) ) |
| 67 | simpl | |- ( ( C e. CC /\ D e. CC ) -> C e. CC ) |
|
| 68 | simpr | |- ( ( C e. CC /\ D e. CC ) -> D e. CC ) |
|
| 69 | 67 68 67 | 3jca | |- ( ( C e. CC /\ D e. CC ) -> ( C e. CC /\ D e. CC /\ C e. CC ) ) |
| 70 | 69 | 3ad2ant2 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( C e. CC /\ D e. CC /\ C e. CC ) ) |
| 71 | ppncan | |- ( ( C e. CC /\ D e. CC /\ C e. CC ) -> ( ( C + D ) + ( C - D ) ) = ( C + C ) ) |
|
| 72 | 71 | oveq2d | |- ( ( C e. CC /\ D e. CC /\ C e. CC ) -> ( ( A + B ) + ( ( C + D ) + ( C - D ) ) ) = ( ( A + B ) + ( C + C ) ) ) |
| 73 | 70 72 | syl | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( A + B ) + ( ( C + D ) + ( C - D ) ) ) = ( ( A + B ) + ( C + C ) ) ) |
| 74 | simp1 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( A e. CC /\ B e. CC ) ) |
|
| 75 | 67 67 | jca | |- ( ( C e. CC /\ D e. CC ) -> ( C e. CC /\ C e. CC ) ) |
| 76 | 75 | 3ad2ant2 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( C e. CC /\ C e. CC ) ) |
| 77 | add4 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ C e. CC ) ) -> ( ( A + B ) + ( C + C ) ) = ( ( A + C ) + ( B + C ) ) ) |
|
| 78 | 74 76 77 | syl2anc | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( A + B ) + ( C + C ) ) = ( ( A + C ) + ( B + C ) ) ) |
| 79 | addcl | |- ( ( A e. CC /\ C e. CC ) -> ( A + C ) e. CC ) |
|
| 80 | 79 | ad2ant2r | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( A + C ) e. CC ) |
| 81 | addcl | |- ( ( B e. CC /\ C e. CC ) -> ( B + C ) e. CC ) |
|
| 82 | 81 | ad2ant2lr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( B + C ) e. CC ) |
| 83 | 80 82 | jca | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + C ) e. CC /\ ( B + C ) e. CC ) ) |
| 84 | 83 | 3adant3 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( A + C ) e. CC /\ ( B + C ) e. CC ) ) |
| 85 | addcom | |- ( ( ( A + C ) e. CC /\ ( B + C ) e. CC ) -> ( ( A + C ) + ( B + C ) ) = ( ( B + C ) + ( A + C ) ) ) |
|
| 86 | 84 85 | syl | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( A + C ) + ( B + C ) ) = ( ( B + C ) + ( A + C ) ) ) |
| 87 | 73 78 86 | 3eqtrd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( A + B ) + ( ( C + D ) + ( C - D ) ) ) = ( ( B + C ) + ( A + C ) ) ) |
| 88 | 64 66 87 | 3eqtr3rd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( B + C ) + ( A + C ) ) = ( _pi + ( C - D ) ) ) |
| 89 | picn | |- _pi e. CC |
|
| 90 | addcom | |- ( ( _pi e. CC /\ ( C - D ) e. CC ) -> ( _pi + ( C - D ) ) = ( ( C - D ) + _pi ) ) |
|
| 91 | 89 28 90 | sylancr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( _pi + ( C - D ) ) = ( ( C - D ) + _pi ) ) |
| 92 | 91 | 3adant3 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( _pi + ( C - D ) ) = ( ( C - D ) + _pi ) ) |
| 93 | 88 92 | eqtrd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( B + C ) + ( A + C ) ) = ( ( C - D ) + _pi ) ) |
| 94 | 93 | fveq2d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( cos ` ( ( B + C ) + ( A + C ) ) ) = ( cos ` ( ( C - D ) + _pi ) ) ) |
| 95 | cosppi | |- ( ( C - D ) e. CC -> ( cos ` ( ( C - D ) + _pi ) ) = -u ( cos ` ( C - D ) ) ) |
|
| 96 | 28 95 | syl | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( cos ` ( ( C - D ) + _pi ) ) = -u ( cos ` ( C - D ) ) ) |
| 97 | 96 | 3adant3 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( cos ` ( ( C - D ) + _pi ) ) = -u ( cos ` ( C - D ) ) ) |
| 98 | 94 97 | eqtrd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( cos ` ( ( B + C ) + ( A + C ) ) ) = -u ( cos ` ( C - D ) ) ) |
| 99 | 59 98 | oveq12d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( cos ` ( ( B + C ) - ( A + C ) ) ) - ( cos ` ( ( B + C ) + ( A + C ) ) ) ) = ( ( cos ` ( B - A ) ) - -u ( cos ` ( C - D ) ) ) ) |
| 100 | subcl | |- ( ( B e. CC /\ A e. CC ) -> ( B - A ) e. CC ) |
|
| 101 | 100 | ancoms | |- ( ( A e. CC /\ B e. CC ) -> ( B - A ) e. CC ) |
| 102 | 101 | adantr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( B - A ) e. CC ) |
| 103 | 102 | coscld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( cos ` ( B - A ) ) e. CC ) |
| 104 | 103 29 | subnegd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( cos ` ( B - A ) ) - -u ( cos ` ( C - D ) ) ) = ( ( cos ` ( B - A ) ) + ( cos ` ( C - D ) ) ) ) |
| 105 | 104 | 3adant3 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( cos ` ( B - A ) ) - -u ( cos ` ( C - D ) ) ) = ( ( cos ` ( B - A ) ) + ( cos ` ( C - D ) ) ) ) |
| 106 | 99 105 | eqtrd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( cos ` ( ( B + C ) - ( A + C ) ) ) - ( cos ` ( ( B + C ) + ( A + C ) ) ) ) = ( ( cos ` ( B - A ) ) + ( cos ` ( C - D ) ) ) ) |
| 107 | 106 | oveq1d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( ( cos ` ( ( B + C ) - ( A + C ) ) ) - ( cos ` ( ( B + C ) + ( A + C ) ) ) ) / 2 ) = ( ( ( cos ` ( B - A ) ) + ( cos ` ( C - D ) ) ) / 2 ) ) |
| 108 | sinmul | |- ( ( ( B + C ) e. CC /\ ( A + C ) e. CC ) -> ( ( sin ` ( B + C ) ) x. ( sin ` ( A + C ) ) ) = ( ( ( cos ` ( ( B + C ) - ( A + C ) ) ) - ( cos ` ( ( B + C ) + ( A + C ) ) ) ) / 2 ) ) |
|
| 109 | 82 80 108 | syl2anc | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( sin ` ( B + C ) ) x. ( sin ` ( A + C ) ) ) = ( ( ( cos ` ( ( B + C ) - ( A + C ) ) ) - ( cos ` ( ( B + C ) + ( A + C ) ) ) ) / 2 ) ) |
| 110 | 109 | 3adant3 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( sin ` ( B + C ) ) x. ( sin ` ( A + C ) ) ) = ( ( ( cos ` ( ( B + C ) - ( A + C ) ) ) - ( cos ` ( ( B + C ) + ( A + C ) ) ) ) / 2 ) ) |
| 111 | cosneg | |- ( ( A - B ) e. CC -> ( cos ` -u ( A - B ) ) = ( cos ` ( A - B ) ) ) |
|
| 112 | 36 111 | syl | |- ( ( A e. CC /\ B e. CC ) -> ( cos ` -u ( A - B ) ) = ( cos ` ( A - B ) ) ) |
| 113 | negsubdi2 | |- ( ( A e. CC /\ B e. CC ) -> -u ( A - B ) = ( B - A ) ) |
|
| 114 | 113 | fveq2d | |- ( ( A e. CC /\ B e. CC ) -> ( cos ` -u ( A - B ) ) = ( cos ` ( B - A ) ) ) |
| 115 | 112 114 | eqtr3d | |- ( ( A e. CC /\ B e. CC ) -> ( cos ` ( A - B ) ) = ( cos ` ( B - A ) ) ) |
| 116 | 115 | 3ad2ant1 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( cos ` ( A - B ) ) = ( cos ` ( B - A ) ) ) |
| 117 | 116 | oveq1d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( cos ` ( A - B ) ) + ( cos ` ( C - D ) ) ) = ( ( cos ` ( B - A ) ) + ( cos ` ( C - D ) ) ) ) |
| 118 | 117 | oveq1d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( ( cos ` ( A - B ) ) + ( cos ` ( C - D ) ) ) / 2 ) = ( ( ( cos ` ( B - A ) ) + ( cos ` ( C - D ) ) ) / 2 ) ) |
| 119 | 107 110 118 | 3eqtr4d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( sin ` ( B + C ) ) x. ( sin ` ( A + C ) ) ) = ( ( ( cos ` ( A - B ) ) + ( cos ` ( C - D ) ) ) / 2 ) ) |
| 120 | 48 53 119 | 3eqtr4d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( ( A + B ) + ( C + D ) ) = _pi ) -> ( ( ( sin ` A ) x. ( sin ` B ) ) + ( ( sin ` C ) x. ( sin ` D ) ) ) = ( ( sin ` ( B + C ) ) x. ( sin ` ( A + C ) ) ) ) |