This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sincosq1sgn . (Contributed by Paul Chapman, 24-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sincosq1lem | |- ( ( A e. RR /\ 0 < A /\ A < ( _pi / 2 ) ) -> 0 < ( sin ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfpire | |- ( _pi / 2 ) e. RR |
|
| 2 | ltle | |- ( ( A e. RR /\ ( _pi / 2 ) e. RR ) -> ( A < ( _pi / 2 ) -> A <_ ( _pi / 2 ) ) ) |
|
| 3 | 1 2 | mpan2 | |- ( A e. RR -> ( A < ( _pi / 2 ) -> A <_ ( _pi / 2 ) ) ) |
| 4 | pire | |- _pi e. RR |
|
| 5 | 4re | |- 4 e. RR |
|
| 6 | pigt2lt4 | |- ( 2 < _pi /\ _pi < 4 ) |
|
| 7 | 6 | simpri | |- _pi < 4 |
| 8 | 4 5 7 | ltleii | |- _pi <_ 4 |
| 9 | 2re | |- 2 e. RR |
|
| 10 | 2pos | |- 0 < 2 |
|
| 11 | 9 10 | pm3.2i | |- ( 2 e. RR /\ 0 < 2 ) |
| 12 | ledivmul | |- ( ( _pi e. RR /\ 2 e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( _pi / 2 ) <_ 2 <-> _pi <_ ( 2 x. 2 ) ) ) |
|
| 13 | 4 9 11 12 | mp3an | |- ( ( _pi / 2 ) <_ 2 <-> _pi <_ ( 2 x. 2 ) ) |
| 14 | 2t2e4 | |- ( 2 x. 2 ) = 4 |
|
| 15 | 14 | breq2i | |- ( _pi <_ ( 2 x. 2 ) <-> _pi <_ 4 ) |
| 16 | 13 15 | bitri | |- ( ( _pi / 2 ) <_ 2 <-> _pi <_ 4 ) |
| 17 | 8 16 | mpbir | |- ( _pi / 2 ) <_ 2 |
| 18 | letr | |- ( ( A e. RR /\ ( _pi / 2 ) e. RR /\ 2 e. RR ) -> ( ( A <_ ( _pi / 2 ) /\ ( _pi / 2 ) <_ 2 ) -> A <_ 2 ) ) |
|
| 19 | 1 9 18 | mp3an23 | |- ( A e. RR -> ( ( A <_ ( _pi / 2 ) /\ ( _pi / 2 ) <_ 2 ) -> A <_ 2 ) ) |
| 20 | 17 19 | mpan2i | |- ( A e. RR -> ( A <_ ( _pi / 2 ) -> A <_ 2 ) ) |
| 21 | 3 20 | syld | |- ( A e. RR -> ( A < ( _pi / 2 ) -> A <_ 2 ) ) |
| 22 | 21 | adantr | |- ( ( A e. RR /\ 0 < A ) -> ( A < ( _pi / 2 ) -> A <_ 2 ) ) |
| 23 | 22 | 3impia | |- ( ( A e. RR /\ 0 < A /\ A < ( _pi / 2 ) ) -> A <_ 2 ) |
| 24 | 0xr | |- 0 e. RR* |
|
| 25 | elioc2 | |- ( ( 0 e. RR* /\ 2 e. RR ) -> ( A e. ( 0 (,] 2 ) <-> ( A e. RR /\ 0 < A /\ A <_ 2 ) ) ) |
|
| 26 | 24 9 25 | mp2an | |- ( A e. ( 0 (,] 2 ) <-> ( A e. RR /\ 0 < A /\ A <_ 2 ) ) |
| 27 | sin02gt0 | |- ( A e. ( 0 (,] 2 ) -> 0 < ( sin ` A ) ) |
|
| 28 | 26 27 | sylbir | |- ( ( A e. RR /\ 0 < A /\ A <_ 2 ) -> 0 < ( sin ` A ) ) |
| 29 | 23 28 | syld3an3 | |- ( ( A e. RR /\ 0 < A /\ A < ( _pi / 2 ) ) -> 0 < ( sin ` A ) ) |