This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrangement of 4 terms in a sum. (Contributed by NM, 13-Nov-1999) (Proof shortened by Andrew Salmon, 22-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | add4 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) + ( C + D ) ) = ( ( A + C ) + ( B + D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | add12 | |- ( ( B e. CC /\ C e. CC /\ D e. CC ) -> ( B + ( C + D ) ) = ( C + ( B + D ) ) ) |
|
| 2 | 1 | 3expb | |- ( ( B e. CC /\ ( C e. CC /\ D e. CC ) ) -> ( B + ( C + D ) ) = ( C + ( B + D ) ) ) |
| 3 | 2 | oveq2d | |- ( ( B e. CC /\ ( C e. CC /\ D e. CC ) ) -> ( A + ( B + ( C + D ) ) ) = ( A + ( C + ( B + D ) ) ) ) |
| 4 | 3 | adantll | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( A + ( B + ( C + D ) ) ) = ( A + ( C + ( B + D ) ) ) ) |
| 5 | addcl | |- ( ( C e. CC /\ D e. CC ) -> ( C + D ) e. CC ) |
|
| 6 | addass | |- ( ( A e. CC /\ B e. CC /\ ( C + D ) e. CC ) -> ( ( A + B ) + ( C + D ) ) = ( A + ( B + ( C + D ) ) ) ) |
|
| 7 | 6 | 3expa | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C + D ) e. CC ) -> ( ( A + B ) + ( C + D ) ) = ( A + ( B + ( C + D ) ) ) ) |
| 8 | 5 7 | sylan2 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) + ( C + D ) ) = ( A + ( B + ( C + D ) ) ) ) |
| 9 | addcl | |- ( ( B e. CC /\ D e. CC ) -> ( B + D ) e. CC ) |
|
| 10 | addass | |- ( ( A e. CC /\ C e. CC /\ ( B + D ) e. CC ) -> ( ( A + C ) + ( B + D ) ) = ( A + ( C + ( B + D ) ) ) ) |
|
| 11 | 10 | 3expa | |- ( ( ( A e. CC /\ C e. CC ) /\ ( B + D ) e. CC ) -> ( ( A + C ) + ( B + D ) ) = ( A + ( C + ( B + D ) ) ) ) |
| 12 | 9 11 | sylan2 | |- ( ( ( A e. CC /\ C e. CC ) /\ ( B e. CC /\ D e. CC ) ) -> ( ( A + C ) + ( B + D ) ) = ( A + ( C + ( B + D ) ) ) ) |
| 13 | 12 | an4s | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + C ) + ( B + D ) ) = ( A + ( C + ( B + D ) ) ) ) |
| 14 | 4 8 13 | 3eqtr4d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) + ( C + D ) ) = ( ( A + C ) + ( B + D ) ) ) |