This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cosine of a number plus _pi . (Contributed by NM, 18-Aug-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cosppi | |- ( A e. CC -> ( cos ` ( A + _pi ) ) = -u ( cos ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | picn | |- _pi e. CC |
|
| 2 | cosadd | |- ( ( A e. CC /\ _pi e. CC ) -> ( cos ` ( A + _pi ) ) = ( ( ( cos ` A ) x. ( cos ` _pi ) ) - ( ( sin ` A ) x. ( sin ` _pi ) ) ) ) |
|
| 3 | 1 2 | mpan2 | |- ( A e. CC -> ( cos ` ( A + _pi ) ) = ( ( ( cos ` A ) x. ( cos ` _pi ) ) - ( ( sin ` A ) x. ( sin ` _pi ) ) ) ) |
| 4 | cospi | |- ( cos ` _pi ) = -u 1 |
|
| 5 | 4 | oveq2i | |- ( ( cos ` A ) x. ( cos ` _pi ) ) = ( ( cos ` A ) x. -u 1 ) |
| 6 | coscl | |- ( A e. CC -> ( cos ` A ) e. CC ) |
|
| 7 | neg1cn | |- -u 1 e. CC |
|
| 8 | mulcom | |- ( ( ( cos ` A ) e. CC /\ -u 1 e. CC ) -> ( ( cos ` A ) x. -u 1 ) = ( -u 1 x. ( cos ` A ) ) ) |
|
| 9 | 7 8 | mpan2 | |- ( ( cos ` A ) e. CC -> ( ( cos ` A ) x. -u 1 ) = ( -u 1 x. ( cos ` A ) ) ) |
| 10 | mulm1 | |- ( ( cos ` A ) e. CC -> ( -u 1 x. ( cos ` A ) ) = -u ( cos ` A ) ) |
|
| 11 | 9 10 | eqtrd | |- ( ( cos ` A ) e. CC -> ( ( cos ` A ) x. -u 1 ) = -u ( cos ` A ) ) |
| 12 | 6 11 | syl | |- ( A e. CC -> ( ( cos ` A ) x. -u 1 ) = -u ( cos ` A ) ) |
| 13 | 5 12 | eqtrid | |- ( A e. CC -> ( ( cos ` A ) x. ( cos ` _pi ) ) = -u ( cos ` A ) ) |
| 14 | sinpi | |- ( sin ` _pi ) = 0 |
|
| 15 | 14 | oveq2i | |- ( ( sin ` A ) x. ( sin ` _pi ) ) = ( ( sin ` A ) x. 0 ) |
| 16 | sincl | |- ( A e. CC -> ( sin ` A ) e. CC ) |
|
| 17 | 16 | mul01d | |- ( A e. CC -> ( ( sin ` A ) x. 0 ) = 0 ) |
| 18 | 15 17 | eqtrid | |- ( A e. CC -> ( ( sin ` A ) x. ( sin ` _pi ) ) = 0 ) |
| 19 | 13 18 | oveq12d | |- ( A e. CC -> ( ( ( cos ` A ) x. ( cos ` _pi ) ) - ( ( sin ` A ) x. ( sin ` _pi ) ) ) = ( -u ( cos ` A ) - 0 ) ) |
| 20 | 6 | negcld | |- ( A e. CC -> -u ( cos ` A ) e. CC ) |
| 21 | 20 | subid1d | |- ( A e. CC -> ( -u ( cos ` A ) - 0 ) = -u ( cos ` A ) ) |
| 22 | 19 21 | eqtrd | |- ( A e. CC -> ( ( ( cos ` A ) x. ( cos ` _pi ) ) - ( ( sin ` A ) x. ( sin ` _pi ) ) ) = -u ( cos ` A ) ) |
| 23 | 3 22 | eqtrd | |- ( A e. CC -> ( cos ` ( A + _pi ) ) = -u ( cos ` A ) ) |