This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Product of sines can be rewritten as half the difference of certain cosines. This follows from cosadd and cossub . (Contributed by David A. Wheeler, 26-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sinmul | |- ( ( A e. CC /\ B e. CC ) -> ( ( sin ` A ) x. ( sin ` B ) ) = ( ( ( cos ` ( A - B ) ) - ( cos ` ( A + B ) ) ) / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cossub | |- ( ( A e. CC /\ B e. CC ) -> ( cos ` ( A - B ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( sin ` A ) x. ( sin ` B ) ) ) ) |
|
| 2 | cosadd | |- ( ( A e. CC /\ B e. CC ) -> ( cos ` ( A + B ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) ) |
|
| 3 | 1 2 | oveq12d | |- ( ( A e. CC /\ B e. CC ) -> ( ( cos ` ( A - B ) ) - ( cos ` ( A + B ) ) ) = ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( sin ` A ) x. ( sin ` B ) ) ) - ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) ) ) |
| 4 | coscl | |- ( A e. CC -> ( cos ` A ) e. CC ) |
|
| 5 | coscl | |- ( B e. CC -> ( cos ` B ) e. CC ) |
|
| 6 | mulcl | |- ( ( ( cos ` A ) e. CC /\ ( cos ` B ) e. CC ) -> ( ( cos ` A ) x. ( cos ` B ) ) e. CC ) |
|
| 7 | 4 5 6 | syl2an | |- ( ( A e. CC /\ B e. CC ) -> ( ( cos ` A ) x. ( cos ` B ) ) e. CC ) |
| 8 | sincl | |- ( A e. CC -> ( sin ` A ) e. CC ) |
|
| 9 | sincl | |- ( B e. CC -> ( sin ` B ) e. CC ) |
|
| 10 | mulcl | |- ( ( ( sin ` A ) e. CC /\ ( sin ` B ) e. CC ) -> ( ( sin ` A ) x. ( sin ` B ) ) e. CC ) |
|
| 11 | 8 9 10 | syl2an | |- ( ( A e. CC /\ B e. CC ) -> ( ( sin ` A ) x. ( sin ` B ) ) e. CC ) |
| 12 | pnncan | |- ( ( ( ( cos ` A ) x. ( cos ` B ) ) e. CC /\ ( ( sin ` A ) x. ( sin ` B ) ) e. CC /\ ( ( sin ` A ) x. ( sin ` B ) ) e. CC ) -> ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( sin ` A ) x. ( sin ` B ) ) ) - ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) ) = ( ( ( sin ` A ) x. ( sin ` B ) ) + ( ( sin ` A ) x. ( sin ` B ) ) ) ) |
|
| 13 | 12 | 3anidm23 | |- ( ( ( ( cos ` A ) x. ( cos ` B ) ) e. CC /\ ( ( sin ` A ) x. ( sin ` B ) ) e. CC ) -> ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( sin ` A ) x. ( sin ` B ) ) ) - ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) ) = ( ( ( sin ` A ) x. ( sin ` B ) ) + ( ( sin ` A ) x. ( sin ` B ) ) ) ) |
| 14 | 2times | |- ( ( ( sin ` A ) x. ( sin ` B ) ) e. CC -> ( 2 x. ( ( sin ` A ) x. ( sin ` B ) ) ) = ( ( ( sin ` A ) x. ( sin ` B ) ) + ( ( sin ` A ) x. ( sin ` B ) ) ) ) |
|
| 15 | 14 | adantl | |- ( ( ( ( cos ` A ) x. ( cos ` B ) ) e. CC /\ ( ( sin ` A ) x. ( sin ` B ) ) e. CC ) -> ( 2 x. ( ( sin ` A ) x. ( sin ` B ) ) ) = ( ( ( sin ` A ) x. ( sin ` B ) ) + ( ( sin ` A ) x. ( sin ` B ) ) ) ) |
| 16 | 13 15 | eqtr4d | |- ( ( ( ( cos ` A ) x. ( cos ` B ) ) e. CC /\ ( ( sin ` A ) x. ( sin ` B ) ) e. CC ) -> ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( sin ` A ) x. ( sin ` B ) ) ) - ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) ) = ( 2 x. ( ( sin ` A ) x. ( sin ` B ) ) ) ) |
| 17 | 7 11 16 | syl2anc | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( sin ` A ) x. ( sin ` B ) ) ) - ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) ) = ( 2 x. ( ( sin ` A ) x. ( sin ` B ) ) ) ) |
| 18 | 2cn | |- 2 e. CC |
|
| 19 | mulcom | |- ( ( 2 e. CC /\ ( ( sin ` A ) x. ( sin ` B ) ) e. CC ) -> ( 2 x. ( ( sin ` A ) x. ( sin ` B ) ) ) = ( ( ( sin ` A ) x. ( sin ` B ) ) x. 2 ) ) |
|
| 20 | 18 11 19 | sylancr | |- ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( ( sin ` A ) x. ( sin ` B ) ) ) = ( ( ( sin ` A ) x. ( sin ` B ) ) x. 2 ) ) |
| 21 | 3 17 20 | 3eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( ( cos ` ( A - B ) ) - ( cos ` ( A + B ) ) ) = ( ( ( sin ` A ) x. ( sin ` B ) ) x. 2 ) ) |
| 22 | 21 | oveq1d | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( cos ` ( A - B ) ) - ( cos ` ( A + B ) ) ) / 2 ) = ( ( ( ( sin ` A ) x. ( sin ` B ) ) x. 2 ) / 2 ) ) |
| 23 | 2ne0 | |- 2 =/= 0 |
|
| 24 | divcan4 | |- ( ( ( ( sin ` A ) x. ( sin ` B ) ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( ( ( sin ` A ) x. ( sin ` B ) ) x. 2 ) / 2 ) = ( ( sin ` A ) x. ( sin ` B ) ) ) |
|
| 25 | 18 23 24 | mp3an23 | |- ( ( ( sin ` A ) x. ( sin ` B ) ) e. CC -> ( ( ( ( sin ` A ) x. ( sin ` B ) ) x. 2 ) / 2 ) = ( ( sin ` A ) x. ( sin ` B ) ) ) |
| 26 | 11 25 | syl | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( ( sin ` A ) x. ( sin ` B ) ) x. 2 ) / 2 ) = ( ( sin ` A ) x. ( sin ` B ) ) ) |
| 27 | 22 26 | eqtr2d | |- ( ( A e. CC /\ B e. CC ) -> ( ( sin ` A ) x. ( sin ` B ) ) = ( ( ( cos ` ( A - B ) ) - ( cos ` ( A + B ) ) ) / 2 ) ) |