This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ptolemy's Theorem. This theorem is named after the Greek astronomer and mathematician Ptolemy (Claudius Ptolemaeus). This particular version is expressed using the sine function. It is proved by expanding all the multiplication of sines to a product of cosines of differences using sinmul , then using algebraic simplification to show that both sides are equal. This formalization is based on the proof in "Trigonometry" by Gelfand and Saul. This is Metamath 100 proof #95. (Contributed by David A. Wheeler, 31-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ptolemy | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) + ( ( sin ‘ 𝐶 ) · ( sin ‘ 𝐷 ) ) ) = ( ( sin ‘ ( 𝐵 + 𝐶 ) ) · ( sin ‘ ( 𝐴 + 𝐶 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcl | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 𝐶 + 𝐷 ) ∈ ℂ ) | |
| 2 | 1 | 3ad2ant2 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( 𝐶 + 𝐷 ) ∈ ℂ ) |
| 3 | 2 | coscld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( cos ‘ ( 𝐶 + 𝐷 ) ) ∈ ℂ ) |
| 4 | 3 | negnegd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → - - ( cos ‘ ( 𝐶 + 𝐷 ) ) = ( cos ‘ ( 𝐶 + 𝐷 ) ) ) |
| 5 | addlid | ⊢ ( ( 𝐶 + 𝐷 ) ∈ ℂ → ( 0 + ( 𝐶 + 𝐷 ) ) = ( 𝐶 + 𝐷 ) ) | |
| 6 | 5 | oveq1d | ⊢ ( ( 𝐶 + 𝐷 ) ∈ ℂ → ( ( 0 + ( 𝐶 + 𝐷 ) ) − ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) ) = ( ( 𝐶 + 𝐷 ) − ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) ) ) |
| 7 | 2 6 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( 0 + ( 𝐶 + 𝐷 ) ) − ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) ) = ( ( 𝐶 + 𝐷 ) − ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) ) ) |
| 8 | 0cnd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → 0 ∈ ℂ ) | |
| 9 | addcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) ∈ ℂ ) | |
| 10 | 9 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐴 + 𝐵 ) ∈ ℂ ) |
| 11 | 10 | 3adant3 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( 𝐴 + 𝐵 ) ∈ ℂ ) |
| 12 | 8 11 2 | pnpcan2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( 0 + ( 𝐶 + 𝐷 ) ) − ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) ) = ( 0 − ( 𝐴 + 𝐵 ) ) ) |
| 13 | simp3 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) | |
| 14 | 13 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( 𝐶 + 𝐷 ) − ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) ) = ( ( 𝐶 + 𝐷 ) − π ) ) |
| 15 | 7 12 14 | 3eqtr3rd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( 𝐶 + 𝐷 ) − π ) = ( 0 − ( 𝐴 + 𝐵 ) ) ) |
| 16 | df-neg | ⊢ - ( 𝐴 + 𝐵 ) = ( 0 − ( 𝐴 + 𝐵 ) ) | |
| 17 | 15 16 | eqtr4di | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( 𝐶 + 𝐷 ) − π ) = - ( 𝐴 + 𝐵 ) ) |
| 18 | 17 | fveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( cos ‘ ( ( 𝐶 + 𝐷 ) − π ) ) = ( cos ‘ - ( 𝐴 + 𝐵 ) ) ) |
| 19 | cosmpi | ⊢ ( ( 𝐶 + 𝐷 ) ∈ ℂ → ( cos ‘ ( ( 𝐶 + 𝐷 ) − π ) ) = - ( cos ‘ ( 𝐶 + 𝐷 ) ) ) | |
| 20 | 2 19 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( cos ‘ ( ( 𝐶 + 𝐷 ) − π ) ) = - ( cos ‘ ( 𝐶 + 𝐷 ) ) ) |
| 21 | cosneg | ⊢ ( ( 𝐴 + 𝐵 ) ∈ ℂ → ( cos ‘ - ( 𝐴 + 𝐵 ) ) = ( cos ‘ ( 𝐴 + 𝐵 ) ) ) | |
| 22 | 11 21 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( cos ‘ - ( 𝐴 + 𝐵 ) ) = ( cos ‘ ( 𝐴 + 𝐵 ) ) ) |
| 23 | 18 20 22 | 3eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → - ( cos ‘ ( 𝐶 + 𝐷 ) ) = ( cos ‘ ( 𝐴 + 𝐵 ) ) ) |
| 24 | 23 | negeqd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → - - ( cos ‘ ( 𝐶 + 𝐷 ) ) = - ( cos ‘ ( 𝐴 + 𝐵 ) ) ) |
| 25 | 4 24 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( cos ‘ ( 𝐶 + 𝐷 ) ) = - ( cos ‘ ( 𝐴 + 𝐵 ) ) ) |
| 26 | 25 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( cos ‘ ( 𝐶 − 𝐷 ) ) − ( cos ‘ ( 𝐶 + 𝐷 ) ) ) = ( ( cos ‘ ( 𝐶 − 𝐷 ) ) − - ( cos ‘ ( 𝐴 + 𝐵 ) ) ) ) |
| 27 | subcl | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 𝐶 − 𝐷 ) ∈ ℂ ) | |
| 28 | 27 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐶 − 𝐷 ) ∈ ℂ ) |
| 29 | 28 | coscld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( cos ‘ ( 𝐶 − 𝐷 ) ) ∈ ℂ ) |
| 30 | 29 | 3adant3 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( cos ‘ ( 𝐶 − 𝐷 ) ) ∈ ℂ ) |
| 31 | 11 | coscld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( cos ‘ ( 𝐴 + 𝐵 ) ) ∈ ℂ ) |
| 32 | 30 31 | subnegd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( cos ‘ ( 𝐶 − 𝐷 ) ) − - ( cos ‘ ( 𝐴 + 𝐵 ) ) ) = ( ( cos ‘ ( 𝐶 − 𝐷 ) ) + ( cos ‘ ( 𝐴 + 𝐵 ) ) ) ) |
| 33 | 26 32 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( cos ‘ ( 𝐶 − 𝐷 ) ) − ( cos ‘ ( 𝐶 + 𝐷 ) ) ) = ( ( cos ‘ ( 𝐶 − 𝐷 ) ) + ( cos ‘ ( 𝐴 + 𝐵 ) ) ) ) |
| 34 | 33 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( ( cos ‘ ( 𝐶 − 𝐷 ) ) − ( cos ‘ ( 𝐶 + 𝐷 ) ) ) / 2 ) = ( ( ( cos ‘ ( 𝐶 − 𝐷 ) ) + ( cos ‘ ( 𝐴 + 𝐵 ) ) ) / 2 ) ) |
| 35 | 34 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( ( ( cos ‘ ( 𝐴 − 𝐵 ) ) − ( cos ‘ ( 𝐴 + 𝐵 ) ) ) / 2 ) + ( ( ( cos ‘ ( 𝐶 − 𝐷 ) ) − ( cos ‘ ( 𝐶 + 𝐷 ) ) ) / 2 ) ) = ( ( ( ( cos ‘ ( 𝐴 − 𝐵 ) ) − ( cos ‘ ( 𝐴 + 𝐵 ) ) ) / 2 ) + ( ( ( cos ‘ ( 𝐶 − 𝐷 ) ) + ( cos ‘ ( 𝐴 + 𝐵 ) ) ) / 2 ) ) ) |
| 36 | subcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) | |
| 37 | 36 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
| 38 | 37 | coscld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( cos ‘ ( 𝐴 − 𝐵 ) ) ∈ ℂ ) |
| 39 | 38 31 | subcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( cos ‘ ( 𝐴 − 𝐵 ) ) − ( cos ‘ ( 𝐴 + 𝐵 ) ) ) ∈ ℂ ) |
| 40 | 30 31 | addcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( cos ‘ ( 𝐶 − 𝐷 ) ) + ( cos ‘ ( 𝐴 + 𝐵 ) ) ) ∈ ℂ ) |
| 41 | 2cnne0 | ⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) | |
| 42 | 41 | a1i | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) |
| 43 | divdir | ⊢ ( ( ( ( cos ‘ ( 𝐴 − 𝐵 ) ) − ( cos ‘ ( 𝐴 + 𝐵 ) ) ) ∈ ℂ ∧ ( ( cos ‘ ( 𝐶 − 𝐷 ) ) + ( cos ‘ ( 𝐴 + 𝐵 ) ) ) ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( ( ( cos ‘ ( 𝐴 − 𝐵 ) ) − ( cos ‘ ( 𝐴 + 𝐵 ) ) ) + ( ( cos ‘ ( 𝐶 − 𝐷 ) ) + ( cos ‘ ( 𝐴 + 𝐵 ) ) ) ) / 2 ) = ( ( ( ( cos ‘ ( 𝐴 − 𝐵 ) ) − ( cos ‘ ( 𝐴 + 𝐵 ) ) ) / 2 ) + ( ( ( cos ‘ ( 𝐶 − 𝐷 ) ) + ( cos ‘ ( 𝐴 + 𝐵 ) ) ) / 2 ) ) ) | |
| 44 | 39 40 42 43 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( ( ( cos ‘ ( 𝐴 − 𝐵 ) ) − ( cos ‘ ( 𝐴 + 𝐵 ) ) ) + ( ( cos ‘ ( 𝐶 − 𝐷 ) ) + ( cos ‘ ( 𝐴 + 𝐵 ) ) ) ) / 2 ) = ( ( ( ( cos ‘ ( 𝐴 − 𝐵 ) ) − ( cos ‘ ( 𝐴 + 𝐵 ) ) ) / 2 ) + ( ( ( cos ‘ ( 𝐶 − 𝐷 ) ) + ( cos ‘ ( 𝐴 + 𝐵 ) ) ) / 2 ) ) ) |
| 45 | 38 31 30 | nppcan3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( ( cos ‘ ( 𝐴 − 𝐵 ) ) − ( cos ‘ ( 𝐴 + 𝐵 ) ) ) + ( ( cos ‘ ( 𝐶 − 𝐷 ) ) + ( cos ‘ ( 𝐴 + 𝐵 ) ) ) ) = ( ( cos ‘ ( 𝐴 − 𝐵 ) ) + ( cos ‘ ( 𝐶 − 𝐷 ) ) ) ) |
| 46 | 45 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( ( ( cos ‘ ( 𝐴 − 𝐵 ) ) − ( cos ‘ ( 𝐴 + 𝐵 ) ) ) + ( ( cos ‘ ( 𝐶 − 𝐷 ) ) + ( cos ‘ ( 𝐴 + 𝐵 ) ) ) ) / 2 ) = ( ( ( cos ‘ ( 𝐴 − 𝐵 ) ) + ( cos ‘ ( 𝐶 − 𝐷 ) ) ) / 2 ) ) |
| 47 | 44 46 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( ( ( cos ‘ ( 𝐴 − 𝐵 ) ) − ( cos ‘ ( 𝐴 + 𝐵 ) ) ) / 2 ) + ( ( ( cos ‘ ( 𝐶 − 𝐷 ) ) + ( cos ‘ ( 𝐴 + 𝐵 ) ) ) / 2 ) ) = ( ( ( cos ‘ ( 𝐴 − 𝐵 ) ) + ( cos ‘ ( 𝐶 − 𝐷 ) ) ) / 2 ) ) |
| 48 | 35 47 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( ( ( cos ‘ ( 𝐴 − 𝐵 ) ) − ( cos ‘ ( 𝐴 + 𝐵 ) ) ) / 2 ) + ( ( ( cos ‘ ( 𝐶 − 𝐷 ) ) − ( cos ‘ ( 𝐶 + 𝐷 ) ) ) / 2 ) ) = ( ( ( cos ‘ ( 𝐴 − 𝐵 ) ) + ( cos ‘ ( 𝐶 − 𝐷 ) ) ) / 2 ) ) |
| 49 | sinmul | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) = ( ( ( cos ‘ ( 𝐴 − 𝐵 ) ) − ( cos ‘ ( 𝐴 + 𝐵 ) ) ) / 2 ) ) | |
| 50 | 49 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) = ( ( ( cos ‘ ( 𝐴 − 𝐵 ) ) − ( cos ‘ ( 𝐴 + 𝐵 ) ) ) / 2 ) ) |
| 51 | sinmul | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( ( sin ‘ 𝐶 ) · ( sin ‘ 𝐷 ) ) = ( ( ( cos ‘ ( 𝐶 − 𝐷 ) ) − ( cos ‘ ( 𝐶 + 𝐷 ) ) ) / 2 ) ) | |
| 52 | 51 | 3ad2ant2 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( sin ‘ 𝐶 ) · ( sin ‘ 𝐷 ) ) = ( ( ( cos ‘ ( 𝐶 − 𝐷 ) ) − ( cos ‘ ( 𝐶 + 𝐷 ) ) ) / 2 ) ) |
| 53 | 50 52 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) + ( ( sin ‘ 𝐶 ) · ( sin ‘ 𝐷 ) ) ) = ( ( ( ( cos ‘ ( 𝐴 − 𝐵 ) ) − ( cos ‘ ( 𝐴 + 𝐵 ) ) ) / 2 ) + ( ( ( cos ‘ ( 𝐶 − 𝐷 ) ) − ( cos ‘ ( 𝐶 + 𝐷 ) ) ) / 2 ) ) ) |
| 54 | simplr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → 𝐵 ∈ ℂ ) | |
| 55 | simpll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → 𝐴 ∈ ℂ ) | |
| 56 | simprl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → 𝐶 ∈ ℂ ) | |
| 57 | 54 55 56 | pnpcan2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐵 + 𝐶 ) − ( 𝐴 + 𝐶 ) ) = ( 𝐵 − 𝐴 ) ) |
| 58 | 57 | fveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( cos ‘ ( ( 𝐵 + 𝐶 ) − ( 𝐴 + 𝐶 ) ) ) = ( cos ‘ ( 𝐵 − 𝐴 ) ) ) |
| 59 | 58 | 3adant3 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( cos ‘ ( ( 𝐵 + 𝐶 ) − ( 𝐴 + 𝐶 ) ) ) = ( cos ‘ ( 𝐵 − 𝐴 ) ) ) |
| 60 | 1 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐶 + 𝐷 ) ∈ ℂ ) |
| 61 | 10 60 28 | 3jca | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) ∈ ℂ ∧ ( 𝐶 + 𝐷 ) ∈ ℂ ∧ ( 𝐶 − 𝐷 ) ∈ ℂ ) ) |
| 62 | 61 | 3adant3 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( 𝐴 + 𝐵 ) ∈ ℂ ∧ ( 𝐶 + 𝐷 ) ∈ ℂ ∧ ( 𝐶 − 𝐷 ) ∈ ℂ ) ) |
| 63 | addass | ⊢ ( ( ( 𝐴 + 𝐵 ) ∈ ℂ ∧ ( 𝐶 + 𝐷 ) ∈ ℂ ∧ ( 𝐶 − 𝐷 ) ∈ ℂ ) → ( ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) + ( 𝐶 − 𝐷 ) ) = ( ( 𝐴 + 𝐵 ) + ( ( 𝐶 + 𝐷 ) + ( 𝐶 − 𝐷 ) ) ) ) | |
| 64 | 62 63 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) + ( 𝐶 − 𝐷 ) ) = ( ( 𝐴 + 𝐵 ) + ( ( 𝐶 + 𝐷 ) + ( 𝐶 − 𝐷 ) ) ) ) |
| 65 | oveq1 | ⊢ ( ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π → ( ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) + ( 𝐶 − 𝐷 ) ) = ( π + ( 𝐶 − 𝐷 ) ) ) | |
| 66 | 65 | 3ad2ant3 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) + ( 𝐶 − 𝐷 ) ) = ( π + ( 𝐶 − 𝐷 ) ) ) |
| 67 | simpl | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → 𝐶 ∈ ℂ ) | |
| 68 | simpr | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → 𝐷 ∈ ℂ ) | |
| 69 | 67 68 67 | 3jca | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ) |
| 70 | 69 | 3ad2ant2 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ) |
| 71 | ppncan | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐶 + 𝐷 ) + ( 𝐶 − 𝐷 ) ) = ( 𝐶 + 𝐶 ) ) | |
| 72 | 71 | oveq2d | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + ( ( 𝐶 + 𝐷 ) + ( 𝐶 − 𝐷 ) ) ) = ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐶 ) ) ) |
| 73 | 70 72 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( 𝐴 + 𝐵 ) + ( ( 𝐶 + 𝐷 ) + ( 𝐶 − 𝐷 ) ) ) = ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐶 ) ) ) |
| 74 | simp1 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) | |
| 75 | 67 67 | jca | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 𝐶 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ) |
| 76 | 75 | 3ad2ant2 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( 𝐶 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ) |
| 77 | add4 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐶 ) ) = ( ( 𝐴 + 𝐶 ) + ( 𝐵 + 𝐶 ) ) ) | |
| 78 | 74 76 77 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐶 ) ) = ( ( 𝐴 + 𝐶 ) + ( 𝐵 + 𝐶 ) ) ) |
| 79 | addcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 + 𝐶 ) ∈ ℂ ) | |
| 80 | 79 | ad2ant2r | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐴 + 𝐶 ) ∈ ℂ ) |
| 81 | addcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 + 𝐶 ) ∈ ℂ ) | |
| 82 | 81 | ad2ant2lr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐵 + 𝐶 ) ∈ ℂ ) |
| 83 | 80 82 | jca | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐶 ) ∈ ℂ ∧ ( 𝐵 + 𝐶 ) ∈ ℂ ) ) |
| 84 | 83 | 3adant3 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( 𝐴 + 𝐶 ) ∈ ℂ ∧ ( 𝐵 + 𝐶 ) ∈ ℂ ) ) |
| 85 | addcom | ⊢ ( ( ( 𝐴 + 𝐶 ) ∈ ℂ ∧ ( 𝐵 + 𝐶 ) ∈ ℂ ) → ( ( 𝐴 + 𝐶 ) + ( 𝐵 + 𝐶 ) ) = ( ( 𝐵 + 𝐶 ) + ( 𝐴 + 𝐶 ) ) ) | |
| 86 | 84 85 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( 𝐴 + 𝐶 ) + ( 𝐵 + 𝐶 ) ) = ( ( 𝐵 + 𝐶 ) + ( 𝐴 + 𝐶 ) ) ) |
| 87 | 73 78 86 | 3eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( 𝐴 + 𝐵 ) + ( ( 𝐶 + 𝐷 ) + ( 𝐶 − 𝐷 ) ) ) = ( ( 𝐵 + 𝐶 ) + ( 𝐴 + 𝐶 ) ) ) |
| 88 | 64 66 87 | 3eqtr3rd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( 𝐵 + 𝐶 ) + ( 𝐴 + 𝐶 ) ) = ( π + ( 𝐶 − 𝐷 ) ) ) |
| 89 | picn | ⊢ π ∈ ℂ | |
| 90 | addcom | ⊢ ( ( π ∈ ℂ ∧ ( 𝐶 − 𝐷 ) ∈ ℂ ) → ( π + ( 𝐶 − 𝐷 ) ) = ( ( 𝐶 − 𝐷 ) + π ) ) | |
| 91 | 89 28 90 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( π + ( 𝐶 − 𝐷 ) ) = ( ( 𝐶 − 𝐷 ) + π ) ) |
| 92 | 91 | 3adant3 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( π + ( 𝐶 − 𝐷 ) ) = ( ( 𝐶 − 𝐷 ) + π ) ) |
| 93 | 88 92 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( 𝐵 + 𝐶 ) + ( 𝐴 + 𝐶 ) ) = ( ( 𝐶 − 𝐷 ) + π ) ) |
| 94 | 93 | fveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( cos ‘ ( ( 𝐵 + 𝐶 ) + ( 𝐴 + 𝐶 ) ) ) = ( cos ‘ ( ( 𝐶 − 𝐷 ) + π ) ) ) |
| 95 | cosppi | ⊢ ( ( 𝐶 − 𝐷 ) ∈ ℂ → ( cos ‘ ( ( 𝐶 − 𝐷 ) + π ) ) = - ( cos ‘ ( 𝐶 − 𝐷 ) ) ) | |
| 96 | 28 95 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( cos ‘ ( ( 𝐶 − 𝐷 ) + π ) ) = - ( cos ‘ ( 𝐶 − 𝐷 ) ) ) |
| 97 | 96 | 3adant3 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( cos ‘ ( ( 𝐶 − 𝐷 ) + π ) ) = - ( cos ‘ ( 𝐶 − 𝐷 ) ) ) |
| 98 | 94 97 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( cos ‘ ( ( 𝐵 + 𝐶 ) + ( 𝐴 + 𝐶 ) ) ) = - ( cos ‘ ( 𝐶 − 𝐷 ) ) ) |
| 99 | 59 98 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( cos ‘ ( ( 𝐵 + 𝐶 ) − ( 𝐴 + 𝐶 ) ) ) − ( cos ‘ ( ( 𝐵 + 𝐶 ) + ( 𝐴 + 𝐶 ) ) ) ) = ( ( cos ‘ ( 𝐵 − 𝐴 ) ) − - ( cos ‘ ( 𝐶 − 𝐷 ) ) ) ) |
| 100 | subcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝐵 − 𝐴 ) ∈ ℂ ) | |
| 101 | 100 | ancoms | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 − 𝐴 ) ∈ ℂ ) |
| 102 | 101 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐵 − 𝐴 ) ∈ ℂ ) |
| 103 | 102 | coscld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( cos ‘ ( 𝐵 − 𝐴 ) ) ∈ ℂ ) |
| 104 | 103 29 | subnegd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( cos ‘ ( 𝐵 − 𝐴 ) ) − - ( cos ‘ ( 𝐶 − 𝐷 ) ) ) = ( ( cos ‘ ( 𝐵 − 𝐴 ) ) + ( cos ‘ ( 𝐶 − 𝐷 ) ) ) ) |
| 105 | 104 | 3adant3 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( cos ‘ ( 𝐵 − 𝐴 ) ) − - ( cos ‘ ( 𝐶 − 𝐷 ) ) ) = ( ( cos ‘ ( 𝐵 − 𝐴 ) ) + ( cos ‘ ( 𝐶 − 𝐷 ) ) ) ) |
| 106 | 99 105 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( cos ‘ ( ( 𝐵 + 𝐶 ) − ( 𝐴 + 𝐶 ) ) ) − ( cos ‘ ( ( 𝐵 + 𝐶 ) + ( 𝐴 + 𝐶 ) ) ) ) = ( ( cos ‘ ( 𝐵 − 𝐴 ) ) + ( cos ‘ ( 𝐶 − 𝐷 ) ) ) ) |
| 107 | 106 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( ( cos ‘ ( ( 𝐵 + 𝐶 ) − ( 𝐴 + 𝐶 ) ) ) − ( cos ‘ ( ( 𝐵 + 𝐶 ) + ( 𝐴 + 𝐶 ) ) ) ) / 2 ) = ( ( ( cos ‘ ( 𝐵 − 𝐴 ) ) + ( cos ‘ ( 𝐶 − 𝐷 ) ) ) / 2 ) ) |
| 108 | sinmul | ⊢ ( ( ( 𝐵 + 𝐶 ) ∈ ℂ ∧ ( 𝐴 + 𝐶 ) ∈ ℂ ) → ( ( sin ‘ ( 𝐵 + 𝐶 ) ) · ( sin ‘ ( 𝐴 + 𝐶 ) ) ) = ( ( ( cos ‘ ( ( 𝐵 + 𝐶 ) − ( 𝐴 + 𝐶 ) ) ) − ( cos ‘ ( ( 𝐵 + 𝐶 ) + ( 𝐴 + 𝐶 ) ) ) ) / 2 ) ) | |
| 109 | 82 80 108 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( sin ‘ ( 𝐵 + 𝐶 ) ) · ( sin ‘ ( 𝐴 + 𝐶 ) ) ) = ( ( ( cos ‘ ( ( 𝐵 + 𝐶 ) − ( 𝐴 + 𝐶 ) ) ) − ( cos ‘ ( ( 𝐵 + 𝐶 ) + ( 𝐴 + 𝐶 ) ) ) ) / 2 ) ) |
| 110 | 109 | 3adant3 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( sin ‘ ( 𝐵 + 𝐶 ) ) · ( sin ‘ ( 𝐴 + 𝐶 ) ) ) = ( ( ( cos ‘ ( ( 𝐵 + 𝐶 ) − ( 𝐴 + 𝐶 ) ) ) − ( cos ‘ ( ( 𝐵 + 𝐶 ) + ( 𝐴 + 𝐶 ) ) ) ) / 2 ) ) |
| 111 | cosneg | ⊢ ( ( 𝐴 − 𝐵 ) ∈ ℂ → ( cos ‘ - ( 𝐴 − 𝐵 ) ) = ( cos ‘ ( 𝐴 − 𝐵 ) ) ) | |
| 112 | 36 111 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( cos ‘ - ( 𝐴 − 𝐵 ) ) = ( cos ‘ ( 𝐴 − 𝐵 ) ) ) |
| 113 | negsubdi2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → - ( 𝐴 − 𝐵 ) = ( 𝐵 − 𝐴 ) ) | |
| 114 | 113 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( cos ‘ - ( 𝐴 − 𝐵 ) ) = ( cos ‘ ( 𝐵 − 𝐴 ) ) ) |
| 115 | 112 114 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( cos ‘ ( 𝐴 − 𝐵 ) ) = ( cos ‘ ( 𝐵 − 𝐴 ) ) ) |
| 116 | 115 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( cos ‘ ( 𝐴 − 𝐵 ) ) = ( cos ‘ ( 𝐵 − 𝐴 ) ) ) |
| 117 | 116 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( cos ‘ ( 𝐴 − 𝐵 ) ) + ( cos ‘ ( 𝐶 − 𝐷 ) ) ) = ( ( cos ‘ ( 𝐵 − 𝐴 ) ) + ( cos ‘ ( 𝐶 − 𝐷 ) ) ) ) |
| 118 | 117 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( ( cos ‘ ( 𝐴 − 𝐵 ) ) + ( cos ‘ ( 𝐶 − 𝐷 ) ) ) / 2 ) = ( ( ( cos ‘ ( 𝐵 − 𝐴 ) ) + ( cos ‘ ( 𝐶 − 𝐷 ) ) ) / 2 ) ) |
| 119 | 107 110 118 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( sin ‘ ( 𝐵 + 𝐶 ) ) · ( sin ‘ ( 𝐴 + 𝐶 ) ) ) = ( ( ( cos ‘ ( 𝐴 − 𝐵 ) ) + ( cos ‘ ( 𝐶 − 𝐷 ) ) ) / 2 ) ) |
| 120 | 48 53 119 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( ( 𝐴 + 𝐵 ) + ( 𝐶 + 𝐷 ) ) = π ) → ( ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) + ( ( sin ‘ 𝐶 ) · ( sin ‘ 𝐷 ) ) ) = ( ( sin ‘ ( 𝐵 + 𝐶 ) ) · ( sin ‘ ( 𝐴 + 𝐶 ) ) ) ) |