This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cosines of a number and its negative are the same. (Contributed by NM, 30-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cosneg | |- ( A e. CC -> ( cos ` -u A ) = ( cos ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negicn | |- -u _i e. CC |
|
| 2 | mulcl | |- ( ( -u _i e. CC /\ A e. CC ) -> ( -u _i x. A ) e. CC ) |
|
| 3 | 1 2 | mpan | |- ( A e. CC -> ( -u _i x. A ) e. CC ) |
| 4 | efcl | |- ( ( -u _i x. A ) e. CC -> ( exp ` ( -u _i x. A ) ) e. CC ) |
|
| 5 | 3 4 | syl | |- ( A e. CC -> ( exp ` ( -u _i x. A ) ) e. CC ) |
| 6 | ax-icn | |- _i e. CC |
|
| 7 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 8 | 6 7 | mpan | |- ( A e. CC -> ( _i x. A ) e. CC ) |
| 9 | efcl | |- ( ( _i x. A ) e. CC -> ( exp ` ( _i x. A ) ) e. CC ) |
|
| 10 | 8 9 | syl | |- ( A e. CC -> ( exp ` ( _i x. A ) ) e. CC ) |
| 11 | mulneg12 | |- ( ( _i e. CC /\ A e. CC ) -> ( -u _i x. A ) = ( _i x. -u A ) ) |
|
| 12 | 6 11 | mpan | |- ( A e. CC -> ( -u _i x. A ) = ( _i x. -u A ) ) |
| 13 | 12 | eqcomd | |- ( A e. CC -> ( _i x. -u A ) = ( -u _i x. A ) ) |
| 14 | 13 | fveq2d | |- ( A e. CC -> ( exp ` ( _i x. -u A ) ) = ( exp ` ( -u _i x. A ) ) ) |
| 15 | mul2neg | |- ( ( _i e. CC /\ A e. CC ) -> ( -u _i x. -u A ) = ( _i x. A ) ) |
|
| 16 | 6 15 | mpan | |- ( A e. CC -> ( -u _i x. -u A ) = ( _i x. A ) ) |
| 17 | 16 | fveq2d | |- ( A e. CC -> ( exp ` ( -u _i x. -u A ) ) = ( exp ` ( _i x. A ) ) ) |
| 18 | 14 17 | oveq12d | |- ( A e. CC -> ( ( exp ` ( _i x. -u A ) ) + ( exp ` ( -u _i x. -u A ) ) ) = ( ( exp ` ( -u _i x. A ) ) + ( exp ` ( _i x. A ) ) ) ) |
| 19 | 5 10 18 | comraddd | |- ( A e. CC -> ( ( exp ` ( _i x. -u A ) ) + ( exp ` ( -u _i x. -u A ) ) ) = ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) |
| 20 | 19 | oveq1d | |- ( A e. CC -> ( ( ( exp ` ( _i x. -u A ) ) + ( exp ` ( -u _i x. -u A ) ) ) / 2 ) = ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) ) |
| 21 | negcl | |- ( A e. CC -> -u A e. CC ) |
|
| 22 | cosval | |- ( -u A e. CC -> ( cos ` -u A ) = ( ( ( exp ` ( _i x. -u A ) ) + ( exp ` ( -u _i x. -u A ) ) ) / 2 ) ) |
|
| 23 | 21 22 | syl | |- ( A e. CC -> ( cos ` -u A ) = ( ( ( exp ` ( _i x. -u A ) ) + ( exp ` ( -u _i x. -u A ) ) ) / 2 ) ) |
| 24 | cosval | |- ( A e. CC -> ( cos ` A ) = ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) ) |
|
| 25 | 20 23 24 | 3eqtr4d | |- ( A e. CC -> ( cos ` -u A ) = ( cos ` A ) ) |