This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projective subspace sum with an empty set. (Contributed by NM, 11-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | padd0.a | |- A = ( Atoms ` K ) |
|
| padd0.p | |- .+ = ( +P ` K ) |
||
| Assertion | padd02 | |- ( ( K e. B /\ X C_ A ) -> ( (/) .+ X ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | padd0.a | |- A = ( Atoms ` K ) |
|
| 2 | padd0.p | |- .+ = ( +P ` K ) |
|
| 3 | simpl | |- ( ( K e. B /\ X C_ A ) -> K e. B ) |
|
| 4 | 0ss | |- (/) C_ A |
|
| 5 | 4 | a1i | |- ( ( K e. B /\ X C_ A ) -> (/) C_ A ) |
| 6 | simpr | |- ( ( K e. B /\ X C_ A ) -> X C_ A ) |
|
| 7 | 3 5 6 | 3jca | |- ( ( K e. B /\ X C_ A ) -> ( K e. B /\ (/) C_ A /\ X C_ A ) ) |
| 8 | neirr | |- -. (/) =/= (/) |
|
| 9 | 8 | intnanr | |- -. ( (/) =/= (/) /\ X =/= (/) ) |
| 10 | 1 2 | paddval0 | |- ( ( ( K e. B /\ (/) C_ A /\ X C_ A ) /\ -. ( (/) =/= (/) /\ X =/= (/) ) ) -> ( (/) .+ X ) = ( (/) u. X ) ) |
| 11 | 7 9 10 | sylancl | |- ( ( K e. B /\ X C_ A ) -> ( (/) .+ X ) = ( (/) u. X ) ) |
| 12 | uncom | |- ( (/) u. X ) = ( X u. (/) ) |
|
| 13 | un0 | |- ( X u. (/) ) = X |
|
| 14 | 12 13 | eqtri | |- ( (/) u. X ) = X |
| 15 | 11 14 | eqtrdi | |- ( ( K e. B /\ X C_ A ) -> ( (/) .+ X ) = X ) |