This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Member of a projective map. (Contributed by NM, 27-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmapfval.b | |- B = ( Base ` K ) |
|
| pmapfval.l | |- .<_ = ( le ` K ) |
||
| pmapfval.a | |- A = ( Atoms ` K ) |
||
| pmapfval.m | |- M = ( pmap ` K ) |
||
| Assertion | elpmap | |- ( ( K e. C /\ X e. B ) -> ( P e. ( M ` X ) <-> ( P e. A /\ P .<_ X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmapfval.b | |- B = ( Base ` K ) |
|
| 2 | pmapfval.l | |- .<_ = ( le ` K ) |
|
| 3 | pmapfval.a | |- A = ( Atoms ` K ) |
|
| 4 | pmapfval.m | |- M = ( pmap ` K ) |
|
| 5 | 1 2 3 4 | pmapval | |- ( ( K e. C /\ X e. B ) -> ( M ` X ) = { x e. A | x .<_ X } ) |
| 6 | 5 | eleq2d | |- ( ( K e. C /\ X e. B ) -> ( P e. ( M ` X ) <-> P e. { x e. A | x .<_ X } ) ) |
| 7 | breq1 | |- ( x = P -> ( x .<_ X <-> P .<_ X ) ) |
|
| 8 | 7 | elrab | |- ( P e. { x e. A | x .<_ X } <-> ( P e. A /\ P .<_ X ) ) |
| 9 | 6 8 | bitrdi | |- ( ( K e. C /\ X e. B ) -> ( P e. ( M ` X ) <-> ( P e. A /\ P .<_ X ) ) ) |