This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ortholattice element joined with zero equals itself. (Contributed by NM, 28-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | olj0.b | |- B = ( Base ` K ) |
|
| olj0.j | |- .\/ = ( join ` K ) |
||
| olj0.z | |- .0. = ( 0. ` K ) |
||
| Assertion | olj02 | |- ( ( K e. OL /\ X e. B ) -> ( .0. .\/ X ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olj0.b | |- B = ( Base ` K ) |
|
| 2 | olj0.j | |- .\/ = ( join ` K ) |
|
| 3 | olj0.z | |- .0. = ( 0. ` K ) |
|
| 4 | ollat | |- ( K e. OL -> K e. Lat ) |
|
| 5 | 4 | adantr | |- ( ( K e. OL /\ X e. B ) -> K e. Lat ) |
| 6 | olop | |- ( K e. OL -> K e. OP ) |
|
| 7 | 1 3 | op0cl | |- ( K e. OP -> .0. e. B ) |
| 8 | 6 7 | syl | |- ( K e. OL -> .0. e. B ) |
| 9 | 8 | adantr | |- ( ( K e. OL /\ X e. B ) -> .0. e. B ) |
| 10 | simpr | |- ( ( K e. OL /\ X e. B ) -> X e. B ) |
|
| 11 | 1 2 | latjcom | |- ( ( K e. Lat /\ .0. e. B /\ X e. B ) -> ( .0. .\/ X ) = ( X .\/ .0. ) ) |
| 12 | 5 9 10 11 | syl3anc | |- ( ( K e. OL /\ X e. B ) -> ( .0. .\/ X ) = ( X .\/ .0. ) ) |
| 13 | 1 2 3 | olj01 | |- ( ( K e. OL /\ X e. B ) -> ( X .\/ .0. ) = X ) |
| 14 | 12 13 | eqtrd | |- ( ( K e. OL /\ X e. B ) -> ( .0. .\/ X ) = X ) |